Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(xy+yz+zx\right)^2\ge3xyz\left(x+y+z\right)=9\Rightarrow xy+yz+zx\ge3\)
\(2\left(x^2+y^2\right)-xy\ge\left(x+y\right)^2-\dfrac{1}{4}\left(x+y\right)^2=\dfrac{3}{4}\left(x+y\right)^2\)
Tương tự và nhân vế với vế:
\(VT\ge\dfrac{27}{64}\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\)
Mặt khác ta có:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\)
\(\ge\left(x+y+z\right)\left(xy+yz+zx\right)-\sqrt[3]{xyz}.\sqrt[3]{xy.yz.zx}\)
\(\ge\left(x+y+z\right)\left(xy+yz+xz\right)-\dfrac{1}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)
\(=\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\ge\dfrac{8}{9}\sqrt{3\left(xy+yz+zx\right)}.\left(xy+yz+zx\right)\)
\(\Rightarrow VT\ge\dfrac{27}{64}.\dfrac{64}{81}.3\left(xy+yz+zx\right)^3\ge3^3=27\) (đpcm)
Chắc đề là \(x+y+z=3\)
Ta có:
\(\left(2x+y+z\right)^2=\left(x+y+x+z\right)^2\ge4\left(x+y\right)\left(x+z\right)\)
\(\Rightarrow P\le\dfrac{x}{4\left(x+y\right)\left(x+z\right)}+\dfrac{y}{4\left(x+y\right)\left(y+z\right)}+\dfrac{z}{4\left(x+z\right)\left(y+z\right)}\)
\(\Rightarrow P\le\dfrac{x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)}{4\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\dfrac{xy+yz+zx}{2\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Mặt khác:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(xy+yz+zx\right)\left(x+y+z\right)-xyz\)
\(=\left(x+y+z\right)\left(xy+yz+zx\right)-\sqrt[3]{xyz}.\sqrt[3]{xy.yz.zx}\)
\(\ge\left(x+y+z\right)\left(xy+yz+zx\right)-\dfrac{1}{3}.\left(x+y+z\right).\dfrac{1}{3}\left(xy+yz+zx\right)\)
\(=\dfrac{8}{9}\left(x+y+z\right)\left(zy+yz+zx\right)=\dfrac{8}{3}\left(xy+yz+zx\right)\)
\(\Rightarrow P\le\dfrac{xy+yz+zx}{2.\dfrac{8}{3}\left(xy+yz+zx\right)}=\dfrac{3}{16}\)
Dấu "=" xảy ra khi \(x=y=z=1\)
\(a+b+c=1\)
\(P=\frac{a}{b^2+c^2}+\frac{b}{a^2+c^2}+\frac{c}{a^2+b^2}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$\text{VT}(1^2+1^2+1^2)\geq (1+\frac{x}{y+z}+1+\frac{y}{x+z}+1+\frac{z}{x+y})^2$
$\Leftrightarrow 3\text{VT}\geq (3+\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y})^2$
$ = \left[3+\frac{x^2}{xy+xz}+\frac{y^2}{yz+yx}+\frac{z^2}{zy+zx}\right]^2$
$\geq \left[3+\frac{(x+y+z)^2}{2(xy+yz+xz)}\right]^2$
$\geq \left[3+\frac{3(xy+yz+xz)}{2(xy+yz+xz)}\right]^2=\frac{81}{4}$
$\Rightarrow \text{VT}\geq \frac{27}{4}$
Dấu "=" xảy ra khi $x=y=z>0$
Dự đoán khi \(x=y=z=\sqrt{3}\) vậy dc GTNN là \(\frac{3\sqrt{3}}{2}\), cần c/m: \(P\ge\frac{3\sqrt{3}}{2}\)
\(\LeftrightarrowΣ\frac{y^2z^2}{x\left(y^2+z^2\right)}\ge\frac{3}{2}\sqrt{\frac{3}{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}}\)
\(\LeftrightarrowΣ\frac{y^3z^3}{y^2+z^2}\ge\frac{3}{2}\sqrt{\frac{3x^4y^4z^4}{x^2y^2+x^2z^2+y^2z^2}}\).Đặt \(\hept{\begin{cases}yz=a\\xz=b\\xy=c\end{cases}}\)
Khi đó ta cần chứng minh \(Σ\frac{a^3}{\frac{ac}{b}+\frac{ab}{c}}\ge\frac{3}{2}\sqrt{\frac{3a^2b^2c^2}{a^2+b^2+c^2}}\)
\(\LeftrightarrowΣ\frac{a^2}{b^2+c^2}\ge\frac{3}{2}\sqrt{\frac{3}{a^2+b^2+c^2}}\) và từ BĐT thuần nhất cuối , ta có thế khẳng định rằng \(a^2+b^2+c^2=3\)
Có nghĩa là ta cần c/m \(Σ\frac{a}{3-a^2}\ge\frac{3}{2}\LeftrightarrowΣ\left(\frac{a}{3-a^2}-\frac{1}{2}\right)\ge0\)
\(\LeftrightarrowΣ\frac{\left(a-1\right)\left(a+3\right)}{3-a^2}\ge0\)\(\LeftrightarrowΣ\left(\frac{\left(a-1\right)\left(a+3\right)}{3-a^2}-\left(a^2-1\right)\right)\ge0\)
\(\LeftrightarrowΣ\frac{a\left(a+2\right)\left(a-1\right)^2}{3-a^2}\ge0\) . XOng!
Cho ba số thực dương x;y;z thoả mãn \(5\left(x+y+z\right)^2\ge14\left(x^2+y^2+z^2\right)\) Tìm giá trị lớn nhất nhỏ nh... - Hoc24