K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

Theo đề bài: \(x+y=1\Leftrightarrow x=1-y\)

Khi đó:

\(A=2\left(x^3+y^3\right)-3\left(x^2+y^2\right)+30\)

\(A=2\left[\left(1-y\right)^3+y^3\right]-3\left[\left(1-y\right)^2+y^2\right]+30\)

\(A=2\left(1-3y+3y^2-y^3+y^3\right)-3\left(1-2y+y^2+y^2\right)+30\)

\(A=2\left(1-3y+3y^2\right)-3\left(1-2y+2y^2\right)+30\)

\(A=2-6y+6y^2-3+6y-6y^2+30\)

\(A=\left(2-3\right)+\left(6y-6y\right)+\left(6y^2-6y^2\right)+30\)

\(A=-1+30=29\)

 

7 tháng 10 2017

\(x^3+y^3\) làm sao có thể bằng \(\left(1-y\right)^3+y^3\) đc vậy bạn

16 tháng 2 2017

=29 

Dung day, to vua thi xong.

NV
12 tháng 9 2021

Đề bài sai nhé, từ giả thiết chỉ xác định được \(x+y=0\Rightarrow y=-x\)

\(\Rightarrow A=4x^2-x^2+x^2+15=4x^2+15\) ko rút gọn được

12 tháng 9 2021

Nguyễn Việt Lâm Giáo viên, bn có thể sửa đề bài cho mk được không ạ??? Cám ơn bn nhiều lắm lắm!!!

19 tháng 11 2021

\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)

\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)

\(x=0;y=0\Leftrightarrow B=0\)

Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)

Vậy \(A\ne B\)

18 tháng 10 2018

Xét hạng tử: \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\)

Thay \(xy+yz+zx=1\); ta có:

\(x\sqrt{\frac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{x^2+xy+yz+zx}}=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)^2\left(x+z\right)}{\left(x+y\right)\left(x+z\right)}}\)

\(=x\sqrt{\left(y+z\right)^2}=xy+xz\)

Tượng tự: \(y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}=xy+yz;z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}=xz+yz\)

Do đó: \(A=2\left(xy+yz+zx\right)=2.1=2\)

ĐS:...