Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1/ Đề đúng phải là \(3x^2+2y^2\) có giá trị nhỏ nhất nhé.
Áp dụng BĐT BCS , ta có
\(1=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left[\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2\right]\left(2x^2+3y^2\right)\)
\(\Rightarrow2x^2+3y^2\ge\frac{1}{5}\). Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}x}{\sqrt{2}}=\frac{\sqrt{3}y}{\sqrt{3}}\\2x+3y=1\end{cases}\) \(\Leftrightarrow x=y=\frac{1}{5}\)
Vậy \(3x^2+2y^2\) có giá trị nhỏ nhất bằng 1/5 khi x = y = 1/5
2/ Áp dụng bđt AM-GM dạng mẫu số ta được
\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\)
\(\Rightarrow x+y\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{6}\)
Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}}{x}=\frac{\sqrt{3}}{y}\\\frac{2}{x}+\frac{3}{y}=6\end{cases}\) \(\Rightarrow\begin{cases}x=\frac{2+\sqrt{6}}{6}\\y=\frac{3+\sqrt{6}}{6}\end{cases}\)
Vậy ......................................


a/ \(y=\left(x+3\right)\left(5-x\right)\le\frac{1}{4}\left(x+3+5-x\right)^2=16\)
Dấu "=" xảy ra khi \(x+3=5-x\Leftrightarrow x=1\)
b/ \(y=x\left(6-x\right)\le\frac{1}{4}\left(x+6-x\right)^2=9\)
\("="\Leftrightarrow x=3\)
c/ \(y=\frac{1}{2}\left(2x+6\right)\left(5-2x\right)\le\frac{1}{8}\left(2x+6+5-2x\right)^2=\frac{121}{8}\)
\("="\Leftrightarrow x=-\frac{1}{4}\)
d/ \(y=\frac{1}{2}\left(2x+5\right)\left(10-2x\right)\le\frac{1}{8}\left(2x+5+10-2x\right)^2=\frac{225}{8}\)
\("="\Leftrightarrow x=\frac{5}{4}\)
e/ \(y=3\left(2x+1\right)\left(5-2x\right)\le\frac{3}{4}\left(2x+1+5-2x\right)^2=27\)
\("="\Leftrightarrow x=1\)
f/ \(\frac{x}{x^2+2}\le\frac{x}{2\sqrt{x^2.2}}=\frac{1}{2\sqrt{2}}\)
\("="\Leftrightarrow x=\sqrt{2}\)
g/ \(y=\frac{x^2}{\left(x^2+\frac{3}{2}+\frac{3}{2}\right)^3}\le\frac{x^2}{\left(3\sqrt[3]{\frac{9}{4}x^2}\right)^3}=\frac{4}{243}\)
\("="\Leftrightarrow x^2=\frac{3}{2}\Leftrightarrow x=\pm\sqrt{\frac{3}{2}}\)

Đặt \(t=\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{xy}{xy}}=2\) \(\Rightarrow t^2=\frac{x^2}{y^2}+\frac{x^2}{y^2}+2\)
\(\Rightarrow A=f\left(t\right)=3\left(t^2-2\right)-8t+10=3t^2-8t+4\)
Xét hàm \(f\left(t\right)\) trên \([2;+\infty)\)
Có \(a=3>0\) ; \(-\frac{b}{2a}=\frac{8}{6}=\frac{4}{3}< 2\)
\(\Rightarrow f\left(t\right)\) đồng biến trên \([2;+\infty)\)
\(\Rightarrow\min\limits_{[2;+\infty)}f\left(t\right)=f\left(2\right)=0\)
Đặt \(\frac{x}{y}=t\)
Ta có: \(A=3\left(t^2+\frac{1}{t^2}\right)-8\left(t+\frac{1}{t}\right)+10\)
Ta sẽ chứng minh \(A\ge0\)
\(3\left(t^2+\frac{1}{t^2}\right)-8\left(t+\frac{1}{t}\right)\ge-10\)
\(\Leftrightarrow3t^2-8t+5+\frac{3}{t^2}-\frac{8}{t}+5\ge0\)
\(\Leftrightarrow\left(3t-5\right)\left(t-1\right)+\left(\frac{3}{t}-5\right)\left(\frac{1}{t}-1\right)\ge0\)
\(\Leftrightarrow\left(3t-5\right)\left(t-1\right)+\left(\frac{5t-3}{t}\right)\left(\frac{t-1}{t}\right)\ge0\)
\(\Leftrightarrow\left(t-1\right)\left(3t-5+\frac{5t-3}{t^2}\right)\ge0\)
\(\Leftrightarrow\frac{\left(t-1\right)^2\left(3t^2-2t+3\right)}{t^2}\ge0\) (đúng)
Đẳng thức xảy ra khi t = 1 hay x = y
Do đó \(A\ge0\) hay Min A = 0 <=> x = y
P/s: Em ko chắc

\(xyz\left(x+y+z\right)=1\Leftrightarrow yz\left(x^2+xy+xz\right)=1\)
\(\Leftrightarrow x^2+xy+xz=\frac{1}{yz}\)
\(A=x^2+xy+xz+yz=\frac{1}{yz}+yz\ge2\sqrt{\frac{yz}{yz}}=2\)
\(A_{min}=2\) khi \(yz=1\)
\(N=2\left(x-y\right)+\frac{32}{\left(x-y\right)\left(2y+3\right)^2}+2y\)
\(\Rightarrow N\ge2\sqrt{2\left(x-y\right)\frac{32}{\left(x-y\right)\left(2y+3\right)^2}}+2y\)
\(\Rightarrow N\ge\frac{16}{2y+3}+2y=\frac{16}{2y+3}+2y+3-3\)
\(\Rightarrow N\ge2\sqrt{\frac{16}{\left(2y+3\right)}.\left(2y+3\right)}-3=8-3=5\)
\(\Rightarrow N_{min}=5\) khi \(\left\{{}\begin{matrix}x=\frac{3}{2}\\y=\frac{1}{2}\end{matrix}\right.\)