Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nhân 2 cả 3 câu rồi phân tích ra hằng đẳng thức là được
gọi độ dài cạnh hình tam giác là a.
áp dụng công thức S=\(\frac{a^2\cdot\sqrt{3}}{4}\)=121\(\sqrt{3}\)
bạn tự tính tiếp nha!!!!!!!!!!!!!
bài 1: <=> 3x2+3x-2x2-2x+x+1=0 <=> x2+2x+1=0 <=>(x+1)2=0<=>x=-1
bài 2: =(x-3)2+1
vì (x-3)2>=0 với mọi x nên (x-3)2+1>=1 => GTNN của x2-6x+10 là 1 khi x=3
\(1+2+3+...+n>100\)
\(\Leftrightarrow\frac{n\left(n+1\right)}{2}>100\)
\(\Leftrightarrow n\left(n+1\right)>200\)
\(\Rightarrow n\ge14\)
\(\Rightarrow n=14\)
Với x,y là số thực lớn hơn 0,13 ta có:
\(\left(xy+yz+zx\right)^2\)
\(=\left(xy\right)^2+\left(yz\right)^2+\left(zx\right)^2+2xyyz+2xyzx+2yzzx\)
Vì x,y,z đều là số thực dương lớn hơn 0 nên:
\(\left(xy\right)^2,\left(yz\right)^2,\left(zx\right)^2,2xyyz,2xyzx,2yzzx\) đều lớn hơn 0
Vậy \(\left(xy+yz+zx\right)^2>0\)