Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(Q=x+1\)
Không thể tìm được GTLN hay GTNN của Q.
b)
\(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)
Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)
Vậy x=1, x=9 là các giá trị cần tìm
a/ \(P=12\)
b/ \(Q=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c/ Ta có:
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Dấu = xảy ra khi x = 3 (thỏa tất cả các điều kiện )
a. Thay x = 3 vào biểu thức P ta được :
\(p=\frac{x+3}{\sqrt{x}-2}=\frac{9+3}{\sqrt{9}-2}=12\)
b, \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c, Ta có :
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Vậy GTNN \(\frac{P}{Q}=2\sqrt{3}\) khi và chỉ khi \(x=3\)
\(x^2-4x-m^2=0\) (1)
\(a)\) Để pt (1) có hai nghiệm phân biệt \(x_1,x_2\) thì \(\Delta'=\left(-2\right)^2-\left(-m\right)^2=4+m^2>0\) ( luôn đúng )
Vậy pt (1) luôn có hai nghiệm phân biệt \(x_1,x_2\) với mọi m
\(b)\) Ta có : \(A=\left|x_1^2-x_2^2\right|=\left|\left(x_1+x_2\right)\left(x_1-x_2\right)\right|\)
\(\Leftrightarrow\)\(A^2=\left(x_1+x_2\right)^2\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2\left(x_1^2+x_2^2-2x_1x_2\right)=\left(x_1+x_2\right)^2\left[\left(x_1+x_2\right)^2-4x_1x_2\right]\) (*)
Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=4\\x_1x_2=-m^2\end{cases}}\)
(*) \(\Leftrightarrow\)\(A^2=4^2\left[4^2-4\left(-m^2\right)\right]=16\left(16+4m^2\right)=64m^2+256\ge256\)
\(\Leftrightarrow\)\(A\ge\sqrt{256}=16\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(64m^2=0\)\(\Leftrightarrow\)\(m=0\)
Vậy GTNN của \(A=16\) khi \(m=0\)
a,\(x^2-4x-m^2=0\)(*)
\(\Delta=4^2-4\left(-m^2\right)=16+4m^2\ge16>0\)
Vậy pt luôn có 2 nghiệm phân biệt với mọi giá trị của m.
b,\(x_1=\frac{4-\sqrt{4m^2+16}}{2};x_2=\frac{4+\sqrt{4m^2+16}}{2}\)
\(\Rightarrow\left|x_1+x_2\right|=\left|\frac{4-\sqrt{4m^2+16}+4+\sqrt{4m^2+16}}{2}\right|=\left|\frac{8}{2}\right|=4\)
pt luôn = 4
Sửa câu b
\(A=\left|x_1^2-x_2^2\right|=\left|\left(x_1-x_2\right)\left(x_1+x_2\right)\right|=\left|\left(\frac{4-\sqrt{4m^2+16}}{2}-\frac{4+\sqrt{4m^2+16}}{2}\right)\left(\frac{4-\sqrt{4m^2+16}}{2}+\frac{4+\sqrt{4m^2+16}}{2}\right)\right|\)\(\Leftrightarrow A=\left|-\left(\sqrt{4m^2+16}\right).4\right|\)
Vì \(4m^2+16>0\)
\(\Rightarrow A=\sqrt{4m^2+16}.4\ge\sqrt{16}.4=4^2=16\)
Vậy MinA = 16
\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1
=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)
\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)
Em thay vào tính nhé!
c) với x>1
A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)
Áp dụng bất đẳng thức Cosi
A\(\ge2\sqrt{2}+3\)
Xét dấu bằng xảy ra ....
\(A=\dfrac{-x^2-2x+2014}{x^2}=\dfrac{2014}{x^2}-\dfrac{2}{x}-1=2014\left(\dfrac{1}{x}-\dfrac{1}{2014}\right)^2-\dfrac{2015}{2014}\ge-\dfrac{2015}{2014}\)
\(A_{min}=-\dfrac{2015}{2014}\) khi \(x=2014\)