K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

(4x-4x+1) + (x+ \(\frac{1}{4x}\)-2)+ 2016=(2x-1)2 +(√x  -√ \(\frac{1}{4x}\))2 >=2016 đạt giá trị nhỏ nhất khi x=0,5

5 tháng 7 2020

\(P=\left(4x^2\right)-3x+\left(\frac{1}{4x}\right)+2015\)

\(=\left(4x^2-4x+1\right)+x+\frac{1}{4x}+2014\)

\(=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2014\)

Áp dụng bđt Cauchy cho 2 số không âm ;

\(x+\frac{1}{4x}\ge2\sqrt[2]{\frac{1}{4}}=1\)

\(< =>\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2014\ge0+1+2014=2015\)

Vậy \(Min_p=2015\)xảy ra khi \(x=\frac{1}{2}\)

2 tháng 3 2020

\(M=\)như trên

\(=>M=4x^2-4x+1+x+\frac{1}{4x}+2010\)

\(=>M=\left(4x^2-4x+1\right)+\left(x+\frac{1}{4x}\right)+2010\)

\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\)

Áp dụng BĐT Cô- si cho 2 số không âm, ta có: 

\(x+\frac{1}{4x}\ge2\sqrt{x.\frac{1}{4x}}=2\sqrt{\frac{1}{4}}=1\)

\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\ge0+1+2010=2011\\ \)

=>minM=2011 khi x=\(\frac{1}{2}\)

NV
2 tháng 7 2021

a.

\(A=x^2+\dfrac{2021}{x}=x^2+\dfrac{2021}{2x}+\dfrac{2021}{2x}\ge3\sqrt[3]{\dfrac{2021^2}{4x^2}}=3\sqrt[3]{\dfrac{2021^2}{4}}\)

Dấu "=" xảy ra khi \(x=\sqrt[3]{\dfrac{2021}{3}}\)

b.

\(B=4\left(x-1\right)+\dfrac{25}{x-1}+4\ge2\sqrt{\dfrac{100\left(x-1\right)}{x-1}}+4=24\)

Dấu "=" xảy ra khi \(x=\dfrac{7}{2}\)

c.

\(C=3x+\dfrac{16}{x^3}=x+x+x+\dfrac{16}{x^3}\ge4\sqrt[4]{\dfrac{16x^3}{x^3}}=8\)

\(A_{min}=8\) khi \(x=2\)

NV
2 tháng 7 2021

d.

\(D=x+\dfrac{1}{x}=\left(\dfrac{x}{4}+\dfrac{1}{x}\right)+\dfrac{3}{4}.x\ge2\sqrt{\dfrac{x}{4x}}+\dfrac{3}{4}.2=\dfrac{5}{2}\)

Dấu "=" xảy ra khi \(x=2\)

e.

\(E=\dfrac{9\left(x-2\right)+18}{2-x}+\dfrac{2}{x}=2\left(\dfrac{1}{x}+\dfrac{9}{2-x}\right)-9\ge\dfrac{2.\left(1+3\right)^2}{x+2-x}-9=7\)

\(E_{min}=7\) khi \(x=\dfrac{1}{5}\)

f.

\(F=\dfrac{3}{1-x}+\dfrac{4}{x}\ge\dfrac{\left(\sqrt{3}+2\right)^2}{1-x+x}=7+4\sqrt{3}\)

Dấu "=" xảy ra khi \(x=4-2\sqrt{3}\)

21 tháng 6 2019

a/ \(P=3x+\frac{1}{2x}=\frac{x}{2}+\frac{5x}{2}+\frac{1}{2x}\) \(\ge2\sqrt{\frac{x}{2}.\frac{1}{2x}}+\frac{5.1}{2}=\frac{5}{2}\)

"="\(\Leftrightarrow x=1\)

b/ \(B=\frac{3x}{2}+\frac{1}{x+1}=\frac{3\left(x+1\right)}{2}-\frac{3}{2}+\frac{1}{x+1}\)

\(\ge2\sqrt{\frac{3\left(x+1\right)}{2}.\frac{1}{x+1}}-\frac{3}{2}=\frac{-3+2\sqrt{6}}{2}\)

"="\(\Leftrightarrow3\left(x+1\right)^2=2\Leftrightarrow x=\frac{-3+\sqrt{6}}{3}\)

c/ \(C=\frac{x}{3}+\frac{5}{2x-1}=\frac{2x-1}{6}+\frac{1}{6}+\frac{5}{2x-1}\)

\(\ge2\sqrt{\frac{2x-1}{6}.\frac{5}{2x-1}}+\frac{1}{6}=\frac{1+4\sqrt{15}}{6}\)

"="\(\Leftrightarrow x=\frac{6+\sqrt{30}}{12}\)

d/ \(D=\frac{x^2+4x+4}{x}=x+4+\frac{4}{x}\)\(\ge2\sqrt{x.\frac{4}{x}}+4=8\)

"="\(\Leftrightarrow x=2\)

NV
21 tháng 6 2019

a/ \(\frac{x}{2}+\frac{1}{2x}+\frac{5}{2}x\ge2\sqrt{\frac{x}{2}.\frac{1}{2x}}+\frac{5}{2}.1=\frac{7}{2}\)

\("="\Leftrightarrow x=1\)

b/ \(B=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2\left(x+1\right)}}-\frac{3}{2}=\frac{-3+2\sqrt{6}}{2}\)

\("="\Leftrightarrow\left(x+1\right)^2=\frac{2}{3}\Rightarrow x=\frac{-3+\sqrt{6}}{3}\)

c/ \(C=\frac{2x-1}{6}+\frac{5}{2x-1}+\frac{1}{6}\ge2\sqrt{\frac{\left(2x-1\right).5}{6\left(2x-1\right)}}+\frac{1}{6}=\frac{1+2\sqrt{30}}{6}\)

\("="\Leftrightarrow\left(2x-1\right)^2=30\Rightarrow x=...\)

d/ \(D=x+\frac{4}{x}+4\ge2\sqrt{x.\frac{4}{x}}+4=8\)

\("="\Leftrightarrow x^2=4\Rightarrow x=...\)

21 tháng 5 2017

\(M=4x^2-10x+\frac{9}{2x}+2018\)

\(=4x^2-12x+2x+\frac{9}{2x}+2018\)

\(=\left(4x^2-12x+9\right)+\left(2x+\frac{9}{2x}\right)+2009\)

\(=\left[\left(2x\right)^2-2.2x.3+3^2\right]+\left(2x+\frac{9}{2x}\right)+2009\)

\(=\left(2x-3\right)^2+\left(2x+\frac{9}{2x}\right)+2009\)

Ta có : \(2x+\frac{9}{2x}\ge2\sqrt{2x\cdot\frac{9}{2x}}=2.\sqrt{9}=6\)

\(\Rightarrow M\ge\left(2x-3\right)^2+6+2009\ge2015\)

Dấu "=" xảy ra <=> \(x=\frac{3}{2}\)

Vậy GTNN của M là \(2015\) tại \(x=\frac{3}{2}\)

21 tháng 5 2017

Min M=2009

1 tháng 1 2020

Lâu rồi không show cách này:)

Sửa đề: \(M=4x^2-3x+\frac{1}{4x}+2017\)

Ta có: \(M=\frac{\left(4x+1\right)\left(2x-1\right)^2}{4x}+2017\ge2017\)

Đẳng thức xảy ra khi \(x=\frac{1}{2}\)

31 tháng 12 2019

Em kiểm tra lại đề nhé! Hàm số của biểu thức : \(M=4^2-3x+\frac{1}{4x}+2017\) có đồ thị đi xuống nên sẽ không tồn tại GTNN em nhé!