\(\left[xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right]^2=2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

Từ giả thiết ta có \(2016=x^2y^2+1+x^2+y^2+x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(\Leftrightarrow x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2015\)

Ta có \(S^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(=x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2015\)

\(\Rightarrow S=\sqrt{2015}\) (Vì S > 0)

21 tháng 7 2018

2

\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)

A= \(\sqrt{9x^2-6x+1}+\sqrt{9x^2-12x+4}\)

A= \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-2\right)^2}=\left|3x-1\right|+\left|3x-2\right|\)

ta có |3x-1|+|3x-2|=|3x-1|+|2-3x| ≥ |3x-1+2-3x|=1

=> A ≥ 1

=> Min A =1 khi 1/3 ≤ x ≤ 2/3

22 tháng 6 2016

nhận liên hợp ta có  \(\left(\sqrt{x^2+1}+x\right)\left(\sqrt{x^2+1}-x\right)=x^2+1-x^2=1\)

mà theo đề bài ta có \(\left(\sqrt{x^2+1}+x\right)\left(y+\sqrt{y^2+1}\right)=1\)

==> \(\sqrt{x^2+1}-x=y+\sqrt{y^2+1}\)

tương tự ta có \(\sqrt{x^2+1}+x=\sqrt{y^2+1}-y\)

trừ từng vế 2 pt trên ta có 2x=-2y <=>x=-y

đến đây ok rùi nhé bạn 

NV
27 tháng 9 2019

\(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=\sqrt{2000}\)

\(\Rightarrow x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2000\)

\(\Rightarrow2x^2y^2+x^2+y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=1999\)

Ta có:

\(S^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(S^2=2x^2y^2+x^2+y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(\Rightarrow S^2=1999\Rightarrow S=\pm\sqrt{1999}\)

17 tháng 9 2019

o my god

5 tháng 2 2020

Có: \(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=\sqrt{2019}\)

\(\Leftrightarrow\left[xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right]^2=2019\)

\(\Leftrightarrow x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)

\(\Leftrightarrow x^2y^2+x^2y^2+x^2+y^2+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)

\(\Leftrightarrow y^2\left(1+x^2\right)+x^2\left(1+y^2\right)+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)

\(\Leftrightarrow\left[y\left(1+x^2\right)+x\left(1+y^2\right)\right]^2=2018\)

\(\Leftrightarrow y\left(1+x^2\right)+x\left(1+y^2\right)=\sqrt{2018}\)

hay \(A=\sqrt{2018}\)

AH
Akai Haruma
Giáo viên
24 tháng 8 2017

Lời giải:

Ta có:

\(A=x\sqrt{y^2+1}+y\sqrt{x^2+1}\)

\(\Leftrightarrow A^2=(x\sqrt{y^2+1}+y\sqrt{x^2+1})^2\)

\(\Leftrightarrow A^2=x^2(y^2+1)+y^2(x^2+1)+2xy\sqrt{(x^2+1)(y^2+1)}\)

\(\Leftrightarrow A^2=(xy)^2+(x^2y^2+x^2+y^2+1)+2xy\sqrt{(x^2+1)(y^2+1)}-1\)

\(\Leftrightarrow A^2=(xy)^2+(x^2+1)(y^2+1)+2xy\sqrt{(x^2+1)(y^2+1)}-1\)

\(\Leftrightarrow A^2=(xy+\sqrt{(x^2+1)(y^2+1)})^2-1\)

\(\Leftrightarrow A^2=2017-1=2016\Rightarrow A=\sqrt{2016}\)