K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2019

5. Ta có: a(a - 1) - (a + 3)(a + 2) = a2 - a - a2 - 2a - 3a - 6

           = -6a - 6 = -6(a + 1) \(⋮\)6

<=> -6(a + 1) \(⋮\)\(\forall\)\(\in\)Z

<=> a(a - 1) - (a + 3)(a + 2) \(⋮\) 6 \(\forall\)\(\in\)Z

6. Thay x = 99 vào biểu thức A, ta có:

A = 995 - 100.994 + 100. 993 - 100.992 + 100 . 99 - 9

A = 995 - (99 + 1).994 + (99 + 1).993 - (99 + 1).992 + (99 + 1).99 - 9

A = 995 - 995 - 994 + 994 + 993 - 993 - 992 + 992 + 99 - 9

A = 99 - 9 

A = 90

Vậy ....

Bài 3:

(3x-1)(2x+7)-(x+1)(6x-5)=16.

=> 6x2+21x-2x-7-(6x2-5x+6x-5)=16

=>  6x2+21x-2x-7-6x2+5x-6x+5=16

=> 18x-2=16

=> 18x=16+2

=> 18x=18

=> x=1

Bài 4:

ta có : \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n-6\right)\)

\(=n^2+5n-n^2-2n+3n+6\)

\(=6n+6=6\left(n+1\right)⋮6\)

⇔6(n+1) chia hết cho 6 với mọi n là số nguyên

⇔n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên

vậy n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên (đpcm)

Bài 6:

\(A=x^5-100x^4+100x^3-100x^2+100x-9\)

\(\Rightarrow A=x^5-\left(99+1\right)x^4+\left(99+1\right)x^3-\left(99+1\right)x^2+\left(99+1\right)x-9\)

\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)

\(\Rightarrow A=\left(x^5-99x^4\right)-\left(x^4-99x^3\right)+\left(x^3-99x^2\right)-\left(x^2-99x\right)+x-9\)

\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)-x\left(x-99\right)+x-9\)

\(\Rightarrow A=\left(x-99\right)\left(x^4-x^3+x^2-x\right)+x-9\)

Thay 99=x, ta được:

\(A=\left(x-x\right)\left(x^4-x^3+x^2-x\right)+x-9\)

\(\Rightarrow A=x-9\)

Thay x=99 ta được:

\(A=99-9=90\)

26 tháng 12 2016

Bạn tự phân tích nhân tử cái biểu thức A thành: 

\(A=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)\)

a) \(n^2\ge0\Rightarrow n^2+1\ge1>0\)

\(A=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)=0\)<=> n-1=0 hoặc n=0 hoặc n+1=0

<=>n=1 hoặc n=0 hoặc n=-1

Vậy A=0 khi \(n\in\left\{-1;0;1\right\}\)

b) Dễ thấy (n-1)n(n+1) là tích của 3 số tự nhiên liên tiếp nên trong tích này có ít nhất 1 thừa số chia hết chia hết cho 2 và 1 thừa số chia hết cho 3 (1)

Xét:

  • \(n=5k\left(k\in Z\right)\) =>\(A=\left(5k-1\right)5k\left(5k+1\right)\left(25k^2+1\right)⋮5\)
  • \(n=5k+1\)

=>\(A=\left(5k+1-1\right)\left(5k+1\right)\left(5k+1+1\right)\left[\left(5k+1\right)^2+1\right]\)

\(=5k\left(5k+1\right)\left(5k+2\right)\left[\left(5k+1\right)^2+1\right]⋮5\)

  • \(n=5k+2\)

=>\(A=\left(5k+2-1\right)\left(5k+2\right)\left(5k+2+1\right)\left[\left(5k+2\right)^2+1\right]\)

\(=\left(5k+1\right)\left(5k+2\right)\left(5k+3\right)\left(25k^2+20k+4+1\right)\)

\(=\left(5k+1\right)\left(5k+2\right)\left(5k+3\right)\left(25k^2+20k+5\right)\)

\(=\left(5k+1\right)\left(5k+2\right)\left(5k+3\right)5\left(5k^2+4k+1\right)⋮5\)

  • n = 5k + 3

=>\(A=\left(5k+3-1\right)\left(5k+3\right)\left(5k+3+1\right)\left[\left(5k+3\right)^2+1\right]\)

\(=\left(5k+2\right)\left(5k+3\right)\left(5k+4\right)\left(25k^2+30k+9+1\right)\)

\(=\left(5k+2\right)\left(5k+3\right)\left(5k+4\right)\left(25k^2+30k+10\right)\)

\(=\left(5k+2\right)\left(5k+3\right)\left(5k+4\right)5\left(5k^2+6k+2\right)⋮5\)

  • n = 5k + 4

=>\(A=\left(5k+4-1\right)\left(5k+4\right)\left(5k+4+1\right)\left[\left(5k+4\right)^2+1\right]\)

\(=\left(5k+3\right)\left(5k+4\right)\left(5k+5\right)\left[\left(5k+4\right)^2+1\right]\)

\(=\left(5k+3\right)\left(5k+4\right)5\left(k+1\right)\left[\left(5k+4\right)^2+1\right]⋮5\)

Vậy A chia hết cho 5 với mọi n thuộc Z (2)

Từ (1) và (2) và 2;3;5 là các số nguyên tố đôi một cùng nhau => A chia hết cho 2.3.5=30 (đpcm)

8 tháng 1 2017

cảm ơn ạ

31 tháng 10 2017

a) \(3x^2-3y^2-12x+12y\)

\(=\left(3x^2-3y^2\right)-\left(12x-12y\right)\)

\(=3\left(x^2-y^2\right)-12\left(x-y\right)\)

\(=3\left(x-y\right)\left(x+y\right)-12\left(x-y\right)\)

\(=\left(x-y\right)\left(3x-3y-12\right)\)

\(=\left(x-y\right).3.\left(x-y-4\right)\)

b) \(4x^3+4xy^2+8x^2y-16x\)

\(=\left(4x^3-16x\right)+\left(4xy^2+8x^2y\right)\)

\(=4x\left(x^2-4\right)+4xy\left(y+2x\right)\)

28 tháng 11 2017

c)    \(x^4-5x^2+4\)

\(=x^4-x^2-4x^2+4\)

\(=\left(x^4-x^2\right)-\left(4x^2-4\right)\)

\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)\)

\(=\left(x^2-4\right)\left(x^2-1\right)\) 

\(=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

5 tháng 9 2020

b) 5(3xn + 1 - yn - 1) + 3(xn + 1 + 5yn - 1) - 5(3xn + 1 + 2yn - 1) - (3n + 1 - 10)

= 15xn + 1 - 5yn - 1 + 3xn + 1 + 15yn - 1 - 15xn + 1 - 10yn - 1 - 3n + 1 - 10

= (15xn + 1 + 3xn + 1 - 15xn + 1 - 3n + 1) + (15yn - 1 - 5yn - 1 - 10yn - 1) - 10

= xn + 1(15 + 3 - 15 - 3) + yn - 1(15 - 5 - 10) - 10

= 0 - 0 - 10 = -10 (đpcm)

a) h(x) = (x + 1)(x2 - x + 1) - (x - 1)(x2 + x + 1)

= x3 - x2 + x + x2 - x + 1 - x3 - x2 - x + x2 + x + 1

= (x3 - x3) - (x2 - x2 + x2 - x2) + (x - x - x + x) + (1 + 1)

= 1 + 1 

= 2 (đpcm)

5 tháng 9 2020

a) h(x) = ( x + 1 )( x2 - x + 1 ) - ( x - 1 )( x2 + x + 1 )

           = ( x3 + 13 ) - ( x3 - 13 )

           = x3 + 1 - x3 + 1

            = 2

Vậy h(x) không phụ thuộc vào biến ( đpcm )

b) 5( 3xn+1 - yn-1 ) + 3( xn+1 + 5yn-1 ) - 5( 3xn+1 + 2yn-1 ) - ( 3xn+1 - 10 )

= 15xn+1 - 5yn-1 + 3xn+1 + 15yn-1 - 15xn+1 - 10yn-1 - 3xn+1 + 10

= ( 15xn+1 + 3xn+1 - 15xn+1 - 3xn+1 ) + ( -5yn-1 + 15yn-1 - 10yn-1 ) + 10

= 0 + 0 + 10 = 10

Vậy giá trị của biểu thức không phụ thuộc vào biến ( đpcm )

a: =>\(n+2\in\left\{1;-1;7;-7\right\}\)

=>\(n\in\left\{-1;-3;5;-9\right\}\)

b: =>n-3+4 chia hết cho n-3

=>\(n-3\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(n\in\left\{4;2;5;1;7;-1\right\}\)

c: =>3n^3+n^2+9n^2-1-4 chia hết cho 3n+1

=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)

d: =>10n^2-10n+11n-11+1 chia hết cho n-1

=>\(n-1\in\left\{1;-1\right\}\)

=>\(n\in\left\{2;0\right\}\)