Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10
Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)
hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)
Bài 1 : Tìm giá trị lớn nhất của biểu thức \(S=\frac{27-x}{2-x}\)Với x là số nguyên khác 2
Help me ><
a) \(A=\frac{1}{\sqrt{x}+10}\) \(\left(x\ge0\right)\)
có \(\sqrt{x}\ge0\)=> \(\sqrt{x}+10\ge10\)
A lớn nhất <=> \(\sqrt{x}+10\)nhỏ nhất <=> \(\sqrt{x}+10=10\)<=> \(\sqrt{x}=0\)<=> x = 0
Vậy \(maxA=\frac{1}{\sqrt{0}+10}=\frac{1}{10}\)
b) \(B=\frac{4}{2-\sqrt{x}}\) \(\left(x\ge0;x\ne4\right)\)
ta có: \(\sqrt{x}\ge0\)với mọi x
=> \(-\sqrt{x}\le0\Leftrightarrow2-\sqrt{x}\le2\)
B đạt GLNN khi \(2-\sqrt{x}\)lớn nhất \(\Leftrightarrow2-\sqrt{x}=2\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
vậy \(minB=\frac{4}{2-\sqrt{0}}=\frac{4}{2}=2\)
Bài 1:
a) ta có: \(A=\frac{2n-1}{n-3}=\frac{2n-6+5}{n-3}=\frac{2.\left(n-3\right)+5}{n-3}=\frac{2.\left(n-3\right)}{n-3}+\frac{5}{n-3}\)\(=2+\frac{5}{n-3}\)
Để A có giá trị nguyên
\(\Rightarrow\frac{5}{n-3}\in z\)
\(\Rightarrow5⋮n-3\Rightarrow n-3\inƯ_{\left(5\right)}=\left(5;-5;1;-1\right)\)
nếu n-3 = 5 => n = 8 (TM)
n-3 = -5 => n= -2 (TM)
n-3 = 1 => n = 4 (TM)
n-3 = -1 => n = 2 (TM)
KL: \(n\in\left(8;-2;4;2\right)\)
b) ta có: \(A=2+\frac{5}{n-3}\) ( pa)
Để A đạt giá trị lớn nhất
=> \(\frac{5}{n-3}\le5\)
Dấu "=" xảy ra khi
\(\frac{5}{n-3}=5\)
\(\Rightarrow n-3=5:5\)
\(n-3=1\)
\(n=4\)
KL: n =4 để A đạt giá trị lớn nhất
Bài 2 bn làm tương tự nha!
\(Tacó\)
\(4n-3⋮n+1\Rightarrow4\left(n+1\right)⋮n+1\Rightarrow4n+4⋮n+1\)
\(\Rightarrow4n+4-\left(4n-3\right)⋮n+1\Rightarrow7⋮n+1\Rightarrow n+1\in\left\{\pm1;\pm7\right\}\)
\(\Rightarrow n\in\left\{-2;0;6;-8\right\}\)
b, \(K=\frac{2}{3+4n}\)
\(\Rightarrow GTLN\left(K\right)\Leftrightarrow n=0\Rightarrow\frac{2}{3+4n}=\frac{2}{3}\Rightarrow GTLN\left(K\right)=\frac{2}{3}\)
Thay x = -1/3 vào biểu thức A,ta có :
\(\left(-\frac{1}{3}\right)^3-5.\left(-\frac{1}{3}\right)^2+10\)
\(=\left(-\frac{1}{27}\right)-5.\frac{1}{9}+10\)
\(=\left(-\frac{1}{27}\right)-\frac{5}{9}+10\)
\(-\frac{16}{27}+10=\frac{286}{27}\)
Vậy ...