Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=1-\dfrac{5}{\sqrt{x}+2}\)
để P đạt Max => \(-\dfrac{5}{\sqrt{x}+2}\) đạt Max => x đạt Max
mà x>3 và x thuộc N => không có gtri của x để thỏa mãn Max P
Em nghĩ nếu làm như Lê Hồ Trọng Tín thì dấu "=" không xảy ra -> sai nên em xin chia sẻ cách làm của mình.Mong được mọi người góp ý.
Theo BĐT AM-GM
\(\sqrt{2019x\left(y+2\right)}=\sqrt{673}.\sqrt{3.x\left(y+2\right)}\)
\(\le\frac{\sqrt{673}}{2}\left[3+x\left(y+2\right)\right]=\frac{\sqrt{673}}{2}\left(3+xy+2x\right)\)
Tương tự với hai BĐT còn lại và cộng theo vế ta được:
\(M\le\frac{\sqrt{673}}{2}\left[9+\left(xy+yz+zx\right)+2\left(x+y+z\right)\right]\)
\(\le\frac{\sqrt{673}}{2}\left[9+\frac{\left(x+y+z\right)^2}{3}+6\right]\le\frac{\sqrt{673}}{2}\left(9+3+6\right)=6=9\sqrt{673}\)
Dấu "=" xảy ra khi x =y = z =1
Vậy...
Theo BĐT AM-GM:
\(\sqrt{2019x\left(y+2\right)}\)\(\le\)\(\frac{1}{2}\)(2019x+y+2)
\(\sqrt{2019y\left(z+2\right)}\)\(\le\)\(\frac{1}{2}\)(2019y+z+2)
\(\sqrt{2019z\left(x+2\right)}\)\(\le\)\(\frac{1}{2}\)(2019z+x+2)
=>M\(\le\)\(\frac{1}{2}\)[2019(x+y+z)+(x+y+z)+6]\(\le\)3033
Vậy MaxM=3033 <=>\(\hept{\begin{cases}2019x=y+2\\2019y=z+2\\2019z=x+2\end{cases}}\)
Lời giải:
\(P=\frac{2(\sqrt{x}+2)+2}{\sqrt{x}+2}=2+\frac{2}{\sqrt{x}+2}\)
Với $x>3$ và $x$ là số tự nhiên thì $x\geq 4$
$\Rightarrow \sqrt{x}+2\geq \sqrt{4}+2=4$
$\Rightarrow \frac{2}{\sqrt{x}+2}\leq \frac{1}{2}$
$\Rightarrow P\leq 2+\frac{1}{2}=\frac{5}{2}$
Vậy $P_{\max}=\frac{5}{2}$ khi $x=4$