K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 9 2021

\(A=2x^2+4x+1=2\left(x^2+2x+1\right)-1=2\left(x+1\right)^2-1\ge-1\)

\(A_{min}=-1\) khi \(x=-1\)

Câu B chỉ có max, ko có min

\(B=-x^2+3x+4=-\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{25}{4}=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)

\(B_{max}=\dfrac{25}{4}\) khi \(x=\dfrac{3}{2}\)

Câu C cũng chỉ có max, không có min

\(C=-4x^2+8x=-4\left(x^2-2x+1\right)+4=-4\left(x-1\right)^2+4\le4\)

\(C_{max}=4\) khi \(x=1\)

Câu D cũng chỉ có max, không có min

\(D=\dfrac{3}{4x^2-4x+1+4}=\dfrac{3}{\left(2x-1\right)^2+4}\le\dfrac{3}{4}\)

\(C_{max}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)

(4 câu có 3 câu sai đề)

10 tháng 9 2021

Nhầm đề bài Sorrry 

đáng lẽ là ntn này giúp con dc ko ạ 

\(\dfrac{3}{4x^{2_-}4x+5}\) Giúp con :(

11 tháng 9 2021

\(A=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\ge-7\)

Dấu \("="\Leftrightarrow x=2\)

\(B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)

\(C=4\left(x^2-2x+1\right)-4=4\left(x-1\right)^2-4\ge-4\)

Dấu \("="\Leftrightarrow x=1\)

\(D=\dfrac{1}{-\left(x^2+2x+1\right)+6}=\dfrac{1}{-\left(x+1\right)^2+6}\ge\dfrac{1}{6}\)

Dấu \("="\Leftrightarrow x=-1\)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

1.

$A=2x^2-8x+1=2(x^2-4x+4)-7=2(x-2)^2-7$

Vì $(x-2)^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow A\geq 2.0-7=-7$

Vậy $A_{\min}=-7$ khi $x-2=0\Leftrightarrow x=2$

2.

$B=x^2+3x+2=(x^2+3x+1,5^2)-0,25=(x+1,5)^2-0,25\geq 0-0,25=-0,25$

Vậy $B_{\min}=-0,25$ khi $x=-1,5$

3.

$C=4x^2-8x=(4x^2-8x+4)-4=(2x-2)^2-4\geq 0-4=-4$

Vậy $C_{\min}=-4$ khi $2x-2=0\Leftrightarrow x=1$

4. Để $D_{\min}$ thì $5-x^2-2x$ là số thực âm lớn nhất

Mà không tồn tại số thực âm lớn nhất nên không tồn tại $x$ để $D_{\min}$

10 tháng 9 2021

A\(=2x^2-8x+1\)

=2x(x-4)+1≥1

Min A=1 ⇔x=4

B=\(x^2+3x+2\)

\(=\left(x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}\right)-\dfrac{1}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\)\(-\dfrac{1}{4}\)

Min B=-1/4⇔x=-3/2

10 tháng 9 2021

C=\(4x^2-8x\)

=\(\left(\left(2x\right)^2-2x.4+16\right)-16\)

=(2x-4)^2 -16≥-16

Min C=-16 ⇔x=2

30 tháng 7 2018

\(A=\dfrac{1}{-x^2+2x-2}\)

A min \(\Leftrightarrow\dfrac{1}{A}\)max

ta có \(\dfrac{1}{A}=-x^2+2x-2=-\left(x^2-2x+2\right)=-\left(x-1\right)^2-1\le-1\)

\(\dfrac{1}{A}\)max= -1 tại x=1

=> A min = -1 tại x=1

\(B=\dfrac{2}{-4x^2+8x-5}\) ( phải là -4x2 nha bn)

B min \(\Leftrightarrow\dfrac{1}{B}\) max

ta có \(\dfrac{1}{B}=\dfrac{-4x^2+8x-5}{2}=\dfrac{-\left(4x^2-8x+5\right)}{2}=\dfrac{-\left(2x-4\right)^2+11}{2}=\dfrac{\left(-2x-4\right)^2}{2}+\dfrac{11}{2}\le\dfrac{11}{2}\)

\(\dfrac{1}{B}\)max=\(\dfrac{11}{2}\) tại x=2

\(\Rightarrow B\) min = \(\dfrac{1}{\dfrac{11}{2}}=\dfrac{2}{11}\) tại x=2

\(A=\dfrac{3}{2x^2+2x+3}=\dfrac{3}{2\left(x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{5}{2}}=\dfrac{3}{2\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{2}}\)

A max \(\Leftrightarrow\dfrac{1}{A}\) min

\(\Leftrightarrow\dfrac{2\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{2}}{3}=\dfrac{2\left(x+\dfrac{1}{2}\right)^2}{3}+\dfrac{\dfrac{5}{2}}{3}=\dfrac{2\left(x+\dfrac{1}{2}\right)^2}{3}+\dfrac{5}{6}\ge\dfrac{5}{6}\)

\(\dfrac{1}{A}\) min = \(\dfrac{5}{6}\)tại x= \(-\dfrac{1}{2}\)

\(\Rightarrow A\)max = \(\dfrac{6}{5}\) tại x= \(-\dfrac{1}{2}\)

B\(=\dfrac{5}{3x^2+4x+15}=\dfrac{5}{3.\left(x^2+\dfrac{4}{3}x+5\right)}=\dfrac{5}{3\left(x^2+2.x.\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{41}{9}\right)}=\dfrac{5}{3\left(x+\dfrac{2}{3}\right)^2+\dfrac{41}{3}}\)

B max \(\Leftrightarrow\dfrac{1}{B}\) min

\(\Leftrightarrow\dfrac{3\left(x+\dfrac{2}{3}\right)^2+\dfrac{41}{3}}{5}=\dfrac{3\left(x+\dfrac{2}{3}\right)^2}{5}+\dfrac{41}{15}\ge\dfrac{41}{15}\)

\(\dfrac{1}{B}\) min = \(\dfrac{41}{15}\) tại x=\(-\dfrac{2}{3}\)

=> \(B\) max = \(\dfrac{15}{41}\) tại x=\(-\dfrac{2}{3}\)

Đây chỉ là gợi ý !! bn pải tự lí luận nha

tik thanghoa

24 tháng 11 2019

a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)

\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)

\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)

Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)

b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)

\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)

\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)

Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)

24 tháng 11 2019

c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)

\(=-\left(x-1\right)^2-1\le-1\)

\(\Rightarrow V\ge\frac{1}{-1}=-1\)

Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)

d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)

\(=-\left(4x^2-8x+4\right)-1\)

\(=-\left(2x-2\right)^2-1\le-1\)

\(\Rightarrow X\ge\frac{2}{-1}=-2\)

Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)

24 tháng 8 2017

Muốn viết tất cả các số tự nhiên từ 100 đến 999 phải dùng hết bao nhiên chữ số 5?
giải
ta có 100 chia hết cho 5 
và số lớn nhất chia hết cho 5 trong dãy số này là:
995
vì cứ mỗi số chia hết cho 5 thì cách 5 đơn vị thì lại là một số chia hết cho 5
nên
từ 100-995 có số chữ số 5 là:
(995-100):5+1=180(số)
đáp số:180 số
đúng thì thanks mình nhé!

24 tháng 8 2017

a)\(A=x^2-8x+9\)

   \(A=x^2-8x+16-7\)

    \(A=\left(x-4\right)^2-7\le-7\)

        Dấu = xảy ra khi x - 4 = 0 ; x= 4

vậy Min A = -7 khi x =4

28 tháng 7 2016

a) Giá trị lớn nhất:

\(A=2x-3x^2-4=-3\left(x^2-\frac{2}{3}x+\frac{4}{3}\right)=-3\left[x^2-2.x.\frac{1}{3}+\left(\frac{1}{3}\right)^2+\frac{35}{9}\right]=-3\left(x-\frac{1}{3}^2\right)-\frac{35}{3}\)

Vì \(\left(x-\frac{1}{3}\right)^2\ge0\left(x\in R\right)\)

Nên \(-3\left(x-\frac{1}{3}\right)^2\le0\left(x\in R\right)\)

do đó \(-3\left(x-\frac{1}{3}\right)^2-\frac{35}{3}\le-\frac{35}{3}\left(x\in R\right)\)

Vậy \(Max_A=-\frac{35}{3}\)khi \(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)

\(B=-x^2-4x=-\left(x^2+4x\right)=-\left(x^2+2.x.2+2^2-2^2\right)=-\left(x+2\right)^2+4\)

Vì \(\left(x+2\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x+2\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x+2\right)^2+4\le4\left(x\in R\right)\)

Vậy \(Max_B=4\)khi \(x+2=0\Rightarrow x=-2\)

b) Giá trị nhỏ nhất 

\(A=x^2-2x-1=x^2-2.x.+1-2=\left(x-1\right)^2-2\)

Vì \(\left(x-1\right)^2\ge0\left(x\in R\right)\)

nên \(\left(x-1\right)^2-2\ge-2\left(x\in R\right)\)

Vậy \(Min_A=-2\)khi \(x-1=0\Rightarrow x=1\)

\(B=4^2+4x+5=\left(2x\right)^2+2.2x.1+1+4=\left(2x+1\right)^2+4\)

vì \(\left(2x+1\right)^2\ge0\left(x\in R\right)\)

nên \(\left(2x+1\right)^2+4\ge4\left(x\in R\right)\)

Vậy \(Min_B=4\)khi \(2x+1=0\Rightarrow x=-\frac{1}{2}\)

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)