K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Đọc không ra. Học cách viết đề đi b

21 tháng 5 2019

\(\frac{2+x}{1+x}+\frac{1-2y}{1+2y}=\left(\frac{2+x}{1+x}-1\right)+\left(\frac{1-2y}{1+2y}+1\right)\)

\(=\frac{2+x-1-x}{x+1}+\frac{1-2y+1+2y}{1+2y}\)

\(=\frac{1}{x+1}+\frac{2}{1+2y}=\frac{1}{x+1}+\frac{1}{\frac{1}{2}+y}\ge\frac{4}{x+y+\frac{3}{2}}\ge\frac{4}{\frac{7}{2}}=\frac{8}{7}\)

Dấu "=" xảy ra khi \(x=\frac{3}{4};y=\frac{5}{4}\)

3 tháng 11 2016

Ta có: \(x-x^2-1=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)

Dấu "=" chỉ xảy ra khi:\(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

Vậy giá trị trên < 0 với mọi số thực x

NV
15 tháng 6 2020

1.

TH1: nếu trong 3 số có ít nhất 1 số bằng 0, không mất tính tổng quát, giả sử đó là a \(\Rightarrow b+c=0\Rightarrow b=-c\)

\(\Rightarrow a^{2011}+b^{2011}+c^{2011}=0+b^{2011}+\left(-b\right)^{2011}=0< 2\) (thỏa mãn)

TH2: nếu cả 3 số đều khác 0 \(\Rightarrow\) trong 3 số tồn tại ít nhất 1 số âm, giả sử đó là a

\(\Rightarrow a^{2011}< 0\)

Mặt khác do \(-1\le b\le1\Rightarrow b^{2011}\le\left|b\right|^{2011}\le1\)

Tương tự: \(c^{2011}\le1\)

\(\Rightarrow a^{2011}+b^{2011}+c^{2011}\le a^{2011}+1+1\le a^{2011}+2< 2\) (đpcm)

2.

\(\Leftrightarrow\frac{2\left(x-5\right)+10}{x-5}-\frac{3}{x-1}< 2\)

\(\Leftrightarrow2+\frac{10}{x-5}-\frac{3}{x-1}< 2\Leftrightarrow\frac{10}{x-5}-\frac{3}{x-1}< 0\)

\(\Leftrightarrow\frac{10x-10-3x+15}{\left(x-5\right)\left(x-1\right)}< 0\Leftrightarrow\frac{7x+5}{\left(x-5\right)\left(x-1\right)}< 0\)

\(\Rightarrow\left[{}\begin{matrix}x< -\frac{5}{7}\\1< x< 5\end{matrix}\right.\)

26 tháng 12 2016

Bài 1:

Ta thấy: \(\left\{\begin{matrix}a^2\ge0\\b^2\ge0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}-a^2\le0\\-b^2\le0\end{matrix}\right.\)

\(\Rightarrow-a^2-b^2\le0\)

\(\Rightarrow Q\le0\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix}-a^2=0\\-b^2=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}a^2=0\\b^2=0\end{matrix}\right.\)\(\Rightarrow a=b=0\)

Vậy \(Max_Q=0\) khi a=b=0

Bài 2:

Ta thấy: \(\left\{\begin{matrix}x^2\ge0\\y^2\ge0\end{matrix}\right.\)

\(\Rightarrow x^2+y^2\ge0\)

\(\Rightarrow P\ge0\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\)\(\Rightarrow x=y=0\)

Vậy \(Min_P=0\) khi x=y=0

18 tháng 8 2020

\(\frac{x+2}{5}< \frac{x+2}{3}+\frac{1}{2}\)

\(\Leftrightarrow\frac{6\left(x+2\right)}{30}< \frac{10\left(x+2\right)}{30}+\frac{15}{30}\)

\(\Leftrightarrow\frac{6x+12}{30}< \frac{10x+20}{30}+\frac{15}{30}\)

\(\Leftrightarrow6x+12< 10x+20+15\)

\(\Leftrightarrow6x-10x< 20+15-12\)

\(\Leftrightarrow-4x< 23\)

\(\Leftrightarrow x>-\frac{23}{4}\)

Vậy tập nghiệm của bất phương trình là \(x>-\frac{23}{4}\)

\(\frac{x+2}{4}-x< \frac{1}{3}\)

\(\Leftrightarrow\frac{3\left(x+2\right)}{12}-\frac{12x}{12}< \frac{4}{12}\)

\(\Leftrightarrow\frac{3x+6}{12}-\frac{12x}{12}< \frac{4}{12}\)

\(\Leftrightarrow3x+6-12x< 4\)

\(\Leftrightarrow3x-12x< 4-6\)

\(\Leftrightarrow-9x< -2\)

\(\Leftrightarrow x>\frac{2}{9}\)

Vậy tập nghiệm của bất phương trình là \(x>\frac{2}{9}\)

\(\frac{2x-1}{x+2}< 0\)( ĐKXĐ : \(x\ne-2\))

Xét hai trường hợp

1/ \(\hept{\begin{cases}2x-1< 0\\x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x>-2\end{cases}}\Rightarrow-2< x< \frac{1}{2}\)

2/ \(\hept{\begin{cases}2x-1>0\\x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x< -2\end{cases}}\)( loại )

Vậy tập nghiệm của bất phương trình là \(-2< x< \frac{1}{2}\)

6 tháng 5 2017

a) điều kiện : x-1\(\ne0\)

\(\frac{1}{x-1}>\frac{1}{2}\Rightarrow\frac{1\cdot2}{\left(x-1\right)\cdot2}>\frac{1\left(x-1\right)}{2\left(x-1\right)}\Leftrightarrow2>x-1\Leftrightarrow-x>-1-2\Leftrightarrow-x>-3\)

\(\Leftrightarrow x< 3\)

b) \(\frac{2x+3}{-2}< \frac{3}{-2}\Leftrightarrow2x+3>3\Leftrightarrow2x>3-3\Leftrightarrow2x>0\Leftrightarrow x>0\)

c) điều kiện :\(x\ne0\)

\(\frac{2x-1}{x}< \frac{1+x}{x}\Leftrightarrow2x-1< 1+x\Leftrightarrow2x-x< 1+1\Leftrightarrow x< 2\)