Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{2x-1}{x^2-2}\left(ĐKXĐ:x\ne\pm\sqrt{2}\right)\)
\(\Leftrightarrow Px^2-2P=2x-1\)
\(\Leftrightarrow Px^2-2x-2P+1=0\)
*Nếu P = 0 thì ....
*Nếu P khác 0 thì pt trên là bậc 2
\(\Delta'=1-P\left(2P+1\right)=-2P^2-P+1\)
Có nghiệm thì \(\Delta'\ge0\Leftrightarrow-1\le P\le\frac{1}{2}\)
Nên Pmin = -1
Đến đây dạng này khi biết kết quả thì phân tích dễ r ha , từ làm nốt câu còn lại nhé , tương tự luôn
\(H=2x^2-x+4==2\left(x^2-\frac{1}{2}x+2\right)\)
\(=2\left[x^2-2\cdot x\cdot\frac{1}{4}+\left(\frac{1}{4}\right)^2\right]+\frac{31}{8}\)
\(=2\left(x-\frac{1}{4}\right)^2+\frac{31}{8}\)
Vì \(\left(x-\frac{1}{4}\right)^2\ge0\forall x\)
=> \(2\left(x-\frac{1}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\forall x\)
Dấu " = " xảy ra khi và chỉ khi \(\left(x-\frac{1}{4}\right)^2=0\Rightarrow x=\frac{1}{4}\)
Vậy \(H_{min}=\frac{31}{8}\)khi x = 1/4
2) \(I=\frac{1}{2}x^2+3x=\frac{1}{2}\left(x^2+6x\right)\)
\(=\frac{1}{2}\left(x^2+2\cdot x\cdot3+3^2\right)-\frac{9}{2}\)
\(=\frac{1}{2}\left(x+3\right)^2-\frac{9}{2}\)
Vì \(\left(x+3\right)^2\ge0\forall x\)
=> \(\frac{1}{2}\left(x+3\right)^2-\frac{9}{2}\ge-\frac{9}{2}\forall x\)
Dấu " = " xảy ra khi và chỉ khi (x + 3)2 = 0 => x = -3
Vậy \(I_{min}=-\frac{9}{2}\)khi x = -3
1) \(H=2x^2-x+4=2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+\frac{31}{8}=2\left(x-\frac{1}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(2\left(x-\frac{1}{4}\right)^2\ge0\Rightarrow x=\frac{1}{4}\)
Vậy Min(H) = 31/8 khi x = 1/4
2) \(I=\frac{1}{2}x^2+3x=\frac{1}{2}\left(x^2+6x+9\right)-\frac{9}{2}=\frac{1}{2}\left(x+3\right)^2-\frac{9}{2}\ge-\frac{9}{2}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\frac{1}{2}\left(x+3\right)^2=0\Rightarrow x=-3\)
Vậy Min(I) = -9/2 khi x = -3
Ta có : A = 2x2 + 10x - 15
= 2x2 + 10x - \(\frac{50}{4}-\frac{5}{2}\)
= 2(x2 + 5x - \(\frac{25}{4}\)) - \(\frac{5}{2}\)
= 2(x - \(\frac{5}{2}\) )2 - \(\frac{5}{2}\)
Mà ; 2(x - \(\frac{5}{2}\) )2 \(\ge0\forall x\)
Nên : 2(x - \(\frac{5}{2}\) )2 - \(\frac{5}{2}\) \(\ge-\frac{5}{2}\forall x\)
Vậy Amin = \(-\frac{5}{2}\) , dấu bằng xảy ra khi x = \(\frac{5}{2}\)
A)\(ĐKXĐ:x\ne1;2;3;4;5\)
B)Ta có:\(P=\frac{1}{x^2-x}+\frac{1}{x^2-3x+2}+\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}\)
\(=\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x^2-x\right)-\left(2x-2\right)}+\frac{1}{\left(x^2-2x\right)-\left(3x-6\right)}+\frac{1}{\left(x^2-3x\right)-\left(4x-12\right)}+\frac{1}{\left(x^2-4x\right)-\left(5x-20\right)}\)
\(=\frac{1}{x\left(x-1\right)}+\frac{1}{x\left(x-1\right)-2\left(x-1\right)}+\frac{1}{x\left(x-2\right)-3\left(x-2\right)}+\frac{1}{x\left(x-3\right)-4\left(x-3\right)}+\frac{1}{x\left(x-4\right)-5\left(x-4\right)}\)
\(=\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
\(=\frac{1}{x}-\frac{1}{x-1}+\frac{1}{x-1}-\frac{1}{x-2}+\frac{1}{x-2}-\frac{1}{x-3}+\frac{1}{x-3}-\frac{1}{x-4}+\frac{1}{x-4}-\frac{1}{x-5}=\frac{1}{x}-\frac{1}{x-5}=\frac{-5}{x\left(x-5\right)}\)
nhầm
\(\frac{1}{\left(x-1\right)x}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-3\right)\left(x-2\right)}+\frac{1}{\left(x-4\right)\left(x-3\right)}+\frac{1}{\left(x-5\right)\left(x-4\right)}\)
\(=\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-4}-\frac{1}{x-3}+\frac{1}{x-5}-\frac{1}{x-4}=\frac{1}{x-5}-\frac{1}{x}=\frac{5}{\left(x-5\right)x}\)
Xin lỗi nha
b) \(M=\frac{x^2+1}{x-1}=\frac{x^2-1}{x-1}+\frac{2}{x-1}=\frac{\left(x-1\right)\left(x+1\right)}{x-1}+\frac{2}{x-1}=x+1+\frac{2}{x-1}\)
Áp dụng bđt Cô si cho 2 số dương ta được: \(x-1+\frac{2}{x-1}\ge2\sqrt{\left(x-1\right).\frac{2}{x-1}}=2\sqrt{2}\)
=>\(M=x+1+\frac{2}{x-1}\ge2\sqrt{2}+2\)
Dấu "=" xảy ra khi \(x=\sqrt{2}+1\)
c) \(N=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)=\left(x^2+4x-5\right)\left(x^2+4x+5\right)=\left(x^2+4x\right)^2-25\)
\(\left(x^2+4x\right)^2\ge0\Rightarrow\left(x^2+4x\right)^2-25\ge-25\)
Dấu "=" xảy ra khi (x2+4x)2=0 <=> x2+4x=0 <=> x(x+4)=0 <=> x=0 hoặc x=-4
Em làm vậy chưa đúng nhé. Ta cần làm như sau:
\(\frac{x-5}{2x+2}-1>0\Leftrightarrow\frac{x-5-\left(2x+2\right)}{2x+2}>0\)
\(\Leftrightarrow\frac{-x-7}{2x+2}>0\)
Tới đây có thể lập bảng xét dấu hoặc xét trường hợp. Ở đây cô xét trường hợp :
Với \(x\le-7:-x-7\ge0;2x+2< 0\Rightarrow\frac{-x-7}{2x+2}\le0\left(l\right)\)
Với \(-7< x< -1:-x-7< 0;2x+2< 0\Rightarrow\frac{-x-7}{2x+2}>0\left(n\right)\)
Với \(x>-1:-x-7< 0;2x+2>0\Rightarrow\frac{-x-7}{2x+2}< 0\left(l\right)\)
Vậy \(-7< x< -1\)
_xin hỏi bài này có cần dùng bất đẳng thức Bunhiacopski không?
Spam Spam SpamSpam SpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpamSpam
SpamSpamSpamSpamSpamSpamSpamSpamSpam