Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình mẫu đầu với cuối nhé:
a) Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)
\(\Rightarrow3⋮d\)
\(\Rightarrow d\in\left\{1,3\right\}\)
Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)
Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.
e) \(ƯCLN\left(2n+3,3n+5\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.
a: Gọi d=ƯCLN(6n+5;2n+1)
=>\(\left\{{}\begin{matrix}6n+5⋮d\\2n+1⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6n+5⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow6n+5-6n-3⋮d\)
=>\(2⋮d\)
mà 2n+1 là số lẻ
nên d=1
=>2n+1 và 6n+5 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(3n+2;5n+3)
=>\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
=>\(15n+10-15n-9⋮d\)
=>\(1⋮d\)
=>d=1
=>3n+2 và 5n+3 là hai số nguyên tố cùng nhau
a) Gọi d=(2n+3; 3n+4)
Ta có: 2n+3 và 3n+4 chia hết cho d
--> 6n+9 và 6n+8 chia hết cho d
--> (6n+9)-(6n+8) chia hết cho d
--> 1 chia hết cho d
--> d = 1
--> 2n+3 và 3n+4 nguyên tố cùng nhau
a: Gọi d là UCLN của 2n+3 và 3n+4
\(\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\Leftrightarrow d=1\)
=> UCLN(2n+3;3n+4)=1
hay 2n+3;3n+4 là hai số nguyên tố cùng nhau
Bài 1:Tính cả ước âm thì là số `12`
Bài 2:
Gọi `ƯCLN(7n+10,5n+7)=d(d>0)(d in N)`
`=>7n+10 vdots d,5n+7 vdots d`
`=>35n+50 vdots d,35n+49 vdots d`
`=>1 vdots d`
`=>d=1`
`=>` 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau.
Các phần còn lại thì bạn làm tương tự câu a.
Bài 1:
Chứng minh rằng: 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau. (với n ∈∈ N)
Bài giải:
Gọi d = ƯCLN(2n + 1; 3n + 1)
⇒⎧⎨⎩2n+1⋮d3n+1⋮d⇒{2n+1⋮d3n+1⋮d ⇒⎧⎨⎩3(2n+1)⋮d2(3n+1)⋮d⇒{3(2n+1)⋮d2(3n+1)⋮d ⇒⎧⎨⎩6n+3⋮d6n+2⋮d⇒{6n+3⋮d6n+2⋮d
⇒⇒ (6n + 3) – (6n + 2) ⋮⋮ d
⇒⇒1 ⋮⋮d
⇒⇒d = 1
Do đó: ƯCLN(2n + 1; 3n + 1) = 1
Vậy hai số 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau.
Bài 2:
Chứng minh rằng: 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau. (với n ∈∈ N)
Bài giải:
Gọi d = ƯCLN(2n + 5; 4n + 12)
⇒⎧⎨⎩2n+5⋮d4n+12⋮d⇒{2n+5⋮d4n+12⋮d ⇒⎧⎨⎩2(2n+5)⋮d4n+12⋮d⇒{2(2n+5)⋮d4n+12⋮d ⇒⎧⎨⎩4n+10⋮d4n+12⋮d⇒{4n+10⋮d4n+12⋮d
⇒⇒ (4n + 12) – (4n + 10) ⋮⋮ d
⇒⇒2 ⋮⋮d
Mà: 2n + 5 là số lẻ nên d = 1
Do đó: ƯCLN(2n + 5; 4n + 12) = 1
Vậy hai số 2n +5 và 4n + 12 là hai số nguyên tố cùng nhau.
Bài 3:
Chứng minh rằng: 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau. (với n ∈∈ N)
Bài giải:
Gọi d = ƯCLN(12n + 1; 30n + 2)
⇒⎧⎨⎩12n+1⋮d30n+2⋮d⇒{12n+1⋮d30n+2⋮d ⇒⎧⎨⎩5(12n+1)⋮d2(30n+2)⋮d⇒{5(12n+1)⋮d2(30n+2)⋮d ⇒⎧⎨⎩60n+5⋮d60n+4⋮d⇒{60n+5⋮d60n+4⋮d
⇒⇒ (60n + 5) – (60n + 4) ⋮⋮ d
⇒⇒1 ⋮⋮d
⇒⇒d = 1
Do đó: ƯCLN(12n + 1; 30n + 2) = 1
Vậy hai số 12n +1 và 30n +2 là hai số nguyên tố cùng nhau.
Bài 4:
Chứng minh rằng: 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau. (với n ∈∈ N)
Bài giải:
Gọi d = ƯCLN(2n + 5; 3n + 7) (với d ∈∈N*)
⇒⎧⎨⎩2n+5⋮d3n+7⋮d⇒{2n+5⋮d3n+7⋮d ⇒⎧⎨⎩3(2n+5)⋮d2(3n+7)⋮d⇒{3(2n+5)⋮d2(3n+7)⋮d ⇒⎧⎨⎩6n+15⋮d6n+14⋮d⇒{6n+15⋮d6n+14⋮d
⇒⇒ (6n + 15) – (6n + 14) ⋮⋮ d
⇒⇒1 ⋮⋮d
⇒⇒d = 1
Do đó: ƯCLN(2n + 5; 3n + 7) = 1
Vậy hai số 2n + 5 và 3n +7 là hai số nguyên tố cùng nhau.
Bài 5:
Chứng minh rằng: 5n + 7 và 3n + 4 là hai số nguyên tố cùng nhau. (với n ∈∈N)
Bài giải:
Gọi d = ƯCLN(5n + 7; 3n + 4) (với d ∈∈N*)
⇒⎧⎨⎩5n+7⋮d3n+4⋮d⇒{5n+7⋮d3n+4⋮d ⇒⎧⎨⎩3(5n+7)⋮d5(3n+4)⋮d⇒{3(5n+7)⋮d5(3n+4)⋮d ⇒⎧⎨⎩15n+21⋮d15n+20⋮d⇒{15n+21⋮d15n+20⋮d
⇒⇒ (15n + 21) – (15n + 20) ⋮⋮ d
⇒⇒1 ⋮⋮d
⇒⇒d = 1
Do đó: ƯCLN(5n + 7; 3n + 4) = 1
Vậy hai số 5n + 7 và 3n +4 là hai số nguyên tố cùng nhau.
Bài 6:
Chứng minh rằng: 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau. (với n ∈∈N)
Bài giải:
Gọi d = ƯCLN(7n + 10; 5n + 7) (với d ∈∈N*)
⇒⎧⎨⎩7n+10⋮d5n+7⋮d⇒{7n+10⋮d5n+7⋮d ⇒⎧⎨⎩5(7n+10)⋮d7(5n+7)⋮d⇒{5(7n+10)⋮d7(5n+7)⋮d ⇒⎧⎨⎩35n+50⋮d35n+49⋮d⇒{35n+50⋮d35n+49⋮d
⇒⇒ (35n + 50) – (35n + 49) ⋮⋮ d
⇒⇒1 ⋮⋮d
⇒⇒d = 1
Do đó: ƯCLN(7n + 10; 5n + 7) = 1
Vậy hai số 7n + 10 và 5n +7 là hai số nguyên tố cùng nhau.
b: Vì 2n+3 là số lẻ
mà 4n+8 là số chẵn
nên 2n+3 và 4n+8 là hai số nguyên tố cùng nhau
a)\(7n+10⋮7n+10\)
\(\Rightarrow5\left(7n+10\right)⋮7n+10\Rightarrow35n+50⋮7n+10\)
\(5n+7⋮5n+7\)
\(\Rightarrow7\left(5n+7\right)⋮5n+7\Rightarrow35n+49⋮5n+7\)
gọi \(UCLN\left(7n+10;5n+7\right)\)là d
\(\Rightarrow35n+50-35n+49⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{\pm1\right\}\)
\(\Rightarrowđpcm\)
a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau