Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giá trị gần đúng của h là : 10,5 cm
b) Giá trị của r là : 24 cm
a) Với giả thiết ở đề bài, ta có thể tính được r từ đó tính được diện tích mặt cầu gần bằng \(26cm^2\)
b) Tương tự câu a, ta tính được thể tích hình nón là \(7,9cm^3\)
a, Tính được r = 1,44cm Þ Smc = 4p r 2 = 26,03 c m 2
b, Ta có V c = 4 3 πR 2 = 15 , 8 cm 3 => R = 1,56cm
=> V h n = 1 3 πR 2 h ≈ 2 , 53 πcm 3
Diện tích phần cần tính gồm diện tích xung quanh của một hình trụ bán kính đường tròn đáy r (cm), chiều cao là 2r (cm) và một mặt cầu bán kính r (cm).
Diện tích xung quanh của hình trụ:
Sxq = 2πrh = 2πr.2r = 4πr2
Diện tích mặt cầu:
S = 4πr2
Diện tích cần tính là:
4πr2 + 4πr2 = 8πr2
Diện tích phần cần tính gồm diện tích xung quanh của một hình trụ bán kính đường tròn đáy r (cm), chiều cao là 2r (cm) và một mặt cầu bán kính r (cm).
Diện tích xung quanh của hình trụ:
S xq = 2 π rh = 2 π r ⋅ 2 r = 4 π r 2
Diện tích mặt cầu:
S = 4 π r 2
Diện tích cần tính là:
4 π r 2 + 4 π r 2 = 8 π r 2
Theo đề bài, tổng diện tích nửa mặt cầu và diện tích hình tròn đáy gấp 3 lần diện tích toàn phần của hình trụ nên: