Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với n=1*2*3*....*n =>n=0 hay muốn tính tổng S ta có công thức
số các số hạng của S là
(2023-1):1=2022
tổng số các số hạng
(2023+1)*2022:1=4.092.528
Bài 1: Tìm x.
a. 7x - 5 = 16
⇒ 7x = 16 + 5
⇒ 7x = 21
=> x = 21 : 7
=> x = 3
Vậy : x = 3
b. 156 - 2 = 82
c. 10x + 65 = 125
=> 10x = 125 - 65
=> 10x = 60
=> x = 60 : 10
=> x = 6
Vậy : x = 6
e. 15 + 5x = 40
=> 5x = 40 -15
=> 5x = 25
=> x = 25 : 5
=> x = 5
Vậy : x = 5
1.
3 . 5 . 7 . 9 . 11 - 120
3 . 5 . 7 . 9 . 11 \(⋮\) 3
120 \(⋮\) 3
\(\Rightarrow\) 3 . 5 . 7 . 9 . 11 - 120 \(⋮\) 3
\(\Rightarrow\) B \(⋮\) 3
3.
a) Ta có 4 số tự nhiên liên tiếp đó là a ; a + 1 ; a + 2 ; a + 3 ( a \(\in\) N )
Theo đề bài, ta có :
a + a + 1 + a + 2 + a + 3
= 4a + 6
Có 4a + 6
( 4a ) \(⋮\) 4
6 \(⋮̸\) 4
\(\Rightarrow\) ( 4a + 6 ) \(⋮̸\) 4
b) Ta có 5 số tự nhiên liên tiếp đó là a ; a + 1 ; a + 2 ; a + 3 ; a +4 ( a \(\in\) N )
Theo đề bài, ta có
a + a + 1 + a + 2 + a + 3 + a + 4
= 5a + 10
Có 5a + 9
( 5a ) \(⋮\) 5
10 \(⋮\) 5
\(\Rightarrow\) ( 5a + 10 ) \(⋮\) 5
4.1
Ta có
a : 72 dư 24
\(\rightarrow\) a = 72k + 24
Có 72k + 24
72k \(⋮\) 3
24 \(⋮\) 3
\(\Rightarrow\) ( 72k + 24 ) \(⋮\) 3
Có 72k + 24
72k \(⋮\) 6
24 \(⋮\) 6
\(\Rightarrow\) ( 72k + 24 ) \(⋮\) 6
Có 72k + 24
72k \(⋮\) 9
24 \(⋮̸\) 9
\(\Rightarrow\) ( 72k + 24 ) \(⋮̸\) 9
CÒN BÀI 2 BẠN TỰ LÀM NHA. THỰC RA BÀI 2 KO PHẢI LÀ DO MK KO BIẾT LÀM MÀ BẠN TỰ LÀM ĐI DỄ LẮM Í . BẠN DỰA VÀO TÍNH CHẤT CHIA HẾT CỦA MỘT TỔNG MÀ LÀM CÂU A CÁCH LÀM CŨNG TƯƠNG TỰ NHƯ CÂU B THÔI
a) nếu n=3k thì n.(n+2).(n+7) chia hết cho 3
nếu n=3k+1 thì n+2 chia hết cho 3 => n.(n+2).(n+7) chia hết cho 3
nếu n=3k+2 thì n+7 chia hết cho 3 => n.(n+2).(n+7) chia hết cho 3
b)nếu n=0 thì 5^n =1 => 5^n-1=0 chia hết cho 4
nếu n=1 thì 5^n=5 => 5^n-1=4 chia hết cho 4
nếu n>1 thì 5^n có 2 chữ số tận cùng là 25 mà 5^n-1 có 2 chữ số tận cùng là 24 chia hết cho 4
vậy 5^n-1 chia hết cho 4
c) n(n+1)+2 = n^2+n+2
vì n(n+1) là hai số tự nhiên liên tiếp nên có chữ số tận cùng là: 0,2,6=> n(n+1)+2 có chữ số tận cùng là 2,4,8 nên không chia hết cho 5. vậy n^2+n+2 không chia hết cho 5
không nhé, vì từ 5! trở đi sẽ chia hết cho 5 (vì 1x2x3x4x5x.... (chia hết cho 5))
Đặt phần từ 5! -> 2023! = b (b chia hết cho 5)
ta còn: 1!+2!+3!+4!+b
=1+1x2+1x2x3 + 1x2x3x4 + b
=1+2+6+24+b
=33+b
mà 33 không chia hết cho 5 trong khi b chia hết cho 5
=> S không chia hết cho 5