Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: x^2+y^2+6x-2y=0
=>x^2+6x+9+y^2-2y+1=10
=>(x+3)^2+(y-1)^2=10
=>R=căn 10; I(-3;1)
Vì (d1)//(d) nên (d1): x-3y+c=0
Theo đề, ta có: d(I;(d1))=căn 10
=>\(\dfrac{\left|-3\cdot1+1\cdot\left(-3\right)+c\right|}{\sqrt{1^2+\left(-3\right)^2}}=\sqrt{10}\)
=>|c-6|=10
=>c=16 hoặc c=-4
Đường tròn (C) có tâm và bán kính là I(0; 0) và R= 3.
∆ tiếp xúc ( C ) => d( I ; ∆) = R => m 5 = 3 => m = 15 m = - 15
Chọn D.
Đường tròn (C): x 2 + y 2 + 4 x − 4 y − 10 = 0 có tâm I(-2;2) và bán kính R = 3 2 .
Khoảng cách d ( I ; Δ ) = − 2 + 2 + m 1 2 + 1 2 = m 2
Để đường thẳng tiếp xúc đường tròn thì:
d ( I ; Δ ) = R ⇔ m 2 = 3 2 ⇔ m = 6 ⇔ m = ± 6
ĐÁP ÁN A
Đáp án: C
(C): x 2 + y 2 = 9 có I(0;0), R = 3
Để Δ tiếp xúc với đường tròn (C) thì
(C); x^2+6x+y^2-2y=0
=>x^2+6x+9+y^2-2y+1=10
=>(x+3)^2+(y-1)^2=10
=>I(-3;1); \(R=\sqrt{10}\)
Để Δ tiếp xúc vơi (C) thì d(I;Δ)=căn 10
=>\(\dfrac{\left|-3\cdot3+1\cdot\left(-1\right)+2m\right|}{\sqrt{3^2+\left(-1\right)^2}}=\sqrt{10}\)
=>|2m-10|=10
=>2m-10=10 hoặc 2m-10=-10
=>m=0 hoặc m=10
a) Gọi đường tròn cần tìm là \(\left(C\right):x^2+y^2-2ax-2by+c=0\)
\(A\left(-1;1\right)\in\left(C\right)\Rightarrow1+1+2a-2b+c=0\Rightarrow2a-2b+c=-2\)
\(B\left(3;1\right)\in\left(C\right)\Rightarrow9+1-6a-2b+c=0\Rightarrow-6a-2b+c=-10\)
\(C\left(1;3\right)\in\left(C\right)\Rightarrow1+9-2a-6b+c=0\Rightarrow-2a-6b+c=-10\)
Giải hệ phương trình ta được: \(a=1;b=1;c=-2\)
Vậy đường tròn cần tìm là: \(x^2+y^2-2x-2y-2=0\)
b) Ta có \(\left(C\right):x^2+y^2-4x+6y+3=0\)
\(\Rightarrow a=\dfrac{-4}{-2}=2;b=\dfrac{6}{-2}=-3;c=3\)
\(\Rightarrow I\left(2;-3\right)\) là tâm, bán kính \(R=\sqrt{2^2+\left(-3\right)^2-3}=\sqrt{10}\)
Để \(\left(\Delta\right)\) tiếp xúc đường tròn \(\Leftrightarrow d\left(I;\Delta\right)=R\)
\(\Leftrightarrow\dfrac{\left|9+m\right|}{\sqrt{10}}=\sqrt{10}\Leftrightarrow\left|9+m\right|=10\Leftrightarrow\left[{}\begin{matrix}9+m=10\\9+m=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-19\end{matrix}\right.\)
- Xét đường tròn \(\left(C\right)\) có tâm \(I\left(1;0\right)\) và \(R=\dfrac{\sqrt{5}}{5}\)
- Để đường thẳng d và đường tròn không có điểm chung
\(\Leftrightarrow d_{\left(d/I\right)}=\dfrac{\left|m-2m+3\right|}{\sqrt{m^2+1}}>R=\dfrac{\sqrt{5}}{5}\)
\(\Leftrightarrow\dfrac{m^2-6m+9}{m^2+1}>\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{m^2-6m+9-0,2m^2-0,2}{m^2+1}>0\)
\(\Leftrightarrow0,8m^2-6m+8,8>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< \dfrac{11}{2}\end{matrix}\right.\)
Vậy ...
Để đường thẳng tiếp xúc với đường tròn thì \(d\left( {I,\Delta } \right) = R \Leftrightarrow \frac{{\left| {3.\left( { - 1} \right) + 4.2 + m} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 2 \Leftrightarrow \left[ \begin{array}{l}m = 5\\m = - 15\end{array} \right.\)
Để đường thẳng tiếp xúc với đường tròn thì
\(d\left(I,\Delta\right)=R\Leftrightarrow\dfrac{\left|3.\left(-1\right)+4.2+m\right|}{\sqrt{3^2+4^2}}=2\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-15\end{matrix}\right.\)
Đường tròn đã cho có tâm I( - 4; -3).
Để đường thẳng ∆ cắt đường tròn theo dây cung dài nhất thì điểm I nằm trên ∆.
Suy ra: 3. (-4) – 4. (-3) + m = 0
⇔ − 12 + 12 + m = 0 ⇔ m = 0
Đáp án A
Ta có (C) có tâm I(m; 0) và bán kính R= 3 nên theo đề bài ta được:
m= 4 và m= -6
Chọn B.