K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2022

Ta có \(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3};...;\dfrac{1}{n^2}=\dfrac{1}{n.n}< \dfrac{1}{\left(n-1\right)n}\)

Do đó \(a< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}=1+\left(\dfrac{1}{1}-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+...+\left(\dfrac{1}{n-1}-\dfrac{1}{n}\right)\)

\(=1+1-\dfrac{1}{n}=1-\dfrac{1}{n}< 2\) . Suy ra \(1< a< 2\)

Vậy \(a\) khôg phải số tự nhiên

 

Ta có: `1 < 1 + 1/2^2 + ... + 1/n^2`

`1/(2.2) < 1/(1.2)`

`1/(3.3) < 1/(2.3)`

`...`

`1/(n^2) < 1/(n-1(n))`

`=> 1/2^2 + ... + 1/n^2 < 1/(1.2) + ... + 1/(n-1(n)) = 1/1 - 1/n < 1`.

`=> a < 1 + 1 = 2`.

`=> 1 < a < 2`.

`=>` Đây không là số tự nhiên.

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Lời giải:

a) \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{n-1}-1\right)\left(\frac{1}{n}-1\right)\)

\(=\frac{1-2}{2}.\frac{1-3}{3}.\frac{1-4}{4}...\frac{-(n-2)}{n-1}.\frac{-(n-1)}{n}\)

\(=\frac{(-1)(-2)(-3)...[-(n-2)][-(n-1)]}{2.3.4...(n-1)n}\)

\(=\frac{(-1)^{n-1}(1.2.3....(n-2)(n-1))}{2.3.4...(n-1)n}=(-1)^{n-1}.\frac{1}{n}\)

b) \(B=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{n^2}-1\right)\)

\(=\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}.....\frac{1-n^2}{n^2}\)

\(=\frac{(-1)(2^2-1)}{2^2}.\frac{(-1)(3^2-1)}{3^2}....\frac{(-1)(n^2-1)}{n^2}\)

\(=(-1)^{n-1}.\frac{(2^2-1)(3^2-1)...(n^2-1)}{2^2.3^2....n^2}\)

\(=(-1)^{n-1}.\frac{(2-1)(2+1)(3-1)(3+1)...(n-1)(n+1)}{2^2.3^2....n^2}\)

\(=(-1)^{n-1}.\frac{(2-1)(3-1)...(n-1)}{2.3...n}.\frac{(2+1)(3+1)...(n+1)}{2.3...n}\)

\(=(-1)^{n-1}.\frac{1.2.3...(n-1)}{2.3...n}.\frac{3.4...(n+1)}{2.3.4...n}\)

\(=(-1)^{n-1}.\frac{1}{n}.\frac{n+1}{2}=(-1)^{n-1}.\frac{n+1}{2n}\)

26 tháng 9 2017

\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{18.19.20}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{4}-\dfrac{1}{2.19.20}< \dfrac{1}{4}\)

Cái B TT nhé

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\\ =1-\dfrac{1}{n}< 1\)

D TT

E mk thấy nó ss ớ

26 tháng 9 2017

ai thế

Bài 1: 

a: \(=\dfrac{15-32}{40}\cdot10+\dfrac{1}{4}\)

\(=\dfrac{-17}{4}+\dfrac{1}{4}=-\dfrac{16}{4}=-4\)

b: \(=\left(\dfrac{9}{6}-\dfrac{5}{6}\right)^2+\dfrac{5}{2}+\dfrac{2}{3}\)

\(=\dfrac{4}{9}+\dfrac{5}{2}+\dfrac{2}{3}\)

\(=\dfrac{8}{18}+\dfrac{45}{18}+\dfrac{12}{18}=\dfrac{65}{18}\)

a: \(=\left(-\dfrac{5}{7}\right)^{n-n}=\left(-\dfrac{5}{7}\right)^0=1\)

b: \(=\left(-\dfrac{1}{2}\right)^{2n-n}=\left(-\dfrac{1}{2}\right)^n\)