Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6
Mình nghĩ đề là 33n+1
33n+2+5.33n+1
33n.32+5.33n.2
33n.9+33n.10
=>33n.19\(⋮\)19
Ta có :
A = n.(3n - 3) + 2n(n - 1) + 75
A = n.3.(n - 1) + 2n(n - 1) + 75
A = (3n + 2n)(n - 1) + 75
A = 5n(n - 1) + 75
A = 5.[n(n - 1) + 25]
=> A \(⋮5\) \(\forall n\)
\(3^{2n+1}+5.2^{3n+1}\)
Với \(n=1\)thì \(3^5+5.2^4=243+80=323⋮19\)
Gải sử \(3^{2k+1}+5.2^{3k+1}⋮19\)
Xét \(3^{3k+5}+5.2^{3k+4}=3^{3k+2}.3^3+5.2^{3k+1}.2^3\)
\(=27\left(3^{3k+2}+5.2^{3k+1}\right)-19.3^{2k+1}⋮19\)