K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2021

Vì \(\sqrt{n}\in Q\).Đặt \(\sqrt{n}=\dfrac{a}{b}\left(a,b\in N\left(a,b\right)=1\right)\)

\(\Rightarrow n=\dfrac{a^2}{b^2}\) mà \(n\in N\Rightarrow\dfrac{a^2}{b^2}\in N\Rightarrow\left[{}\begin{matrix}a⋮b\\b=1\end{matrix}\right.\)

mà \(\left(a,b\right)=1\Rightarrow b=1\Rightarrow\sqrt{n}=a\in N\Rightarrow\) đpcm

4 tháng 12 2016

\(n^2+2n-x^2-x=0.\)
\(\Delta'_n=1+x^2+x\ne k^2\left(k\in Z\right)\Rightarrow dpcm\)

22 tháng 4 2020

Ta có : 

\(x\left(x+1\right)=n\left(n+2\right)\)

\(\Leftrightarrow x^2+x=n^2+2n\)

\(\Leftrightarrow x^2+x+1=n^2+2n+1\)

\(\Leftrightarrow x^2+x+1=\left(n+1\right)^2\)

Vì n là số nguyên cho trước thì \(\left(n+1\right)^2\) là một số chính phương 

\(x>0\), Ta có : \(x^2+x+1>x^2\)

                             \(x^2+x+1< x^2+x+1+x=x^2+2x+1\)

                                                                                            \(=\left(x+1\right)^2\)

\(\Rightarrow x^2< x^2+x+1< \left(x+1\right)^2\)

Hay \(x^2< \left(n+1\right)^2< \left(x+1\right)^2\)

=> Vô lí do không thể có số chính phương nào tồn tại giữa hai số chính phương liên tiếp 

Vậy không thể tồn tại số nguyên dương x 

AH
Akai Haruma
Giáo viên
28 tháng 7 2019

Lalisa Manobal: em ơi, 1 mệnh đề mà có tồn tại 1 cái không đúng thì chắc chắn không đúng. Người ta bắt CMR $x^ky^k(x^k+y^k)\leq 2$ với mọi $x,y$ dương thỏa mãn $x+y=2$ và $k$ nguyên dương mà có 1 TH không đúng thì cả bài đó sai. Em cứ đưa ra TH đó cho thầy là được. Dùng quy nạp chị cũng đố thầy làm ra.

Sách đó chị nhớ là không có bài giải bài này đâu em.

27 tháng 7 2019

tth vào đây xem sao, dùng thử quy nạp đi