Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi (n + 3,n + 2) = d
=> \(\hept{\begin{cases}n+3⋮d\\n+2⋮d\end{cases}}\Leftrightarrow\left(n+3\right)-\left(n+2\right)⋮d\)
=> \(1⋮d\Rightarrow d=1\)
=> (n + 3, n + 2) = 1
=> ĐPCM
b) Gọi (2n + 3; 4n + 8) = d
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\Leftrightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
=> \(2⋮d\Leftrightarrow d\in\left\{1;2\right\}\)
Khi d = 2 nhận thấy 2n + 3 \(⋮̸\)2 \(\forall n\)
=> d = 2 loại
=> d = 1
=> ĐPCM
10a+b chia hết cho 13
=> 40a +4b-49a chia hết cho 13
hay a+4b chí hết cho 13
a) tổng S bằng
(2014+4).671:2=677 039
b)n.(n+2013) để mọi số tự nhiên n mà tổng trên chia hét cho 2 thì n=2n
→2n.(n+2013)\(⋮̸\)2
C)M=2+22+23+...+220
=(2+22+23+24)+...+(217+218+219+220)
=(2+22+23+24)+...+(216.2+216.22+216+23+216.24)
=30.1+...+216.(2+22+23+24)
=30.1+...+216.30
=30(1+25+29+213+216)\(⋮\)5
c, M= 2 + 22 + 23 +........220
Nhận xét: 2+ 22 + 23 + 24 = 30; 30 chia hết cho 5
Khi đó: M = ( 2+22 + 23 + 24 ) + (25 + 26 + 27 + 28)+.....+ (217+218+219+220)
= ( 2+22 + 23 + 24 ) + 24. ( 2+22 + 23 + 24 ) +...........+216 .( 2+22 + 23 + 24 )
= 30+24 .30 + 28. 30 +.........+ 216.30
= 30.(24 + 28 +.........+216) chia hết cho 5 và 30 chia hết cho 5
Vậy M chia hết cho 5
a: \(M=3\left(1+3^2+3^4\right)+...+3^{95}\left(1+3^2+3^4\right)\)
\(=273\left(1+...+3^{95}\right)⋮13\)
b: \(9M=3^3+3^5+...+3^{101}\)
\(\Leftrightarrow8M=3^{101}-3\)
\(\Leftrightarrow M=\dfrac{3^{101}-3}{8}\)
\(2M+3=\dfrac{3^{101}-3}{4}+3=\dfrac{3^{101}-3+12}{4}=\dfrac{3^{101}+9}{4}\)
n.(n+8)(n+13)
n[((n+1)+1)][(n+2)+11]
[n(n+1)+n][(n+2)+11]
n(n+1)(n+2)+11n(n+1)+n(n+2)
n(n+1)(n+2)+n[11(n+1)+n+2)
n(n+1)(n+2)+3n(4n+13)
ba số tn liên tiêp có một số chia hết cho 3 =>chia hết cho 3
a, 2n+1 chia hết cho 21=>21 thuộc Ư(2n+1)
=>2n+1 thuộc {1,3,7,21}
2n+1 | 1 | 3 | 7 | 21 |
n | 0 | 1 | 3 | 10 |
Vậy n thuộc{0,1,3,10}
- Nếu n chia hết cho 3 thì n( n + 8 ) ( n + 13 ) cũng chia hết cho 3
- Nếu n chia 3 dư 1 thì n + 8 chia 3 hết cho 3
=> n ( n + 8 ) ( n + 13 ) chia hết cho 3
- Nếu n chia 3 dư 2 thì n + 13 chia hết cho 3
=> n ( n + 8 ) ( n + 13 ) chia hết cho 3
Vậy n ( n + 18 ) ( n + 13 ) chia hết cho mọi 3 với n là số tự nhiên.
mình đang cần gấp