\(\in\)Z các số sau là số chẵn hay số lẻ:

a) (n-4).(n-15)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2016

a, Nếu n chẵn

=> n-4 chẵn

=> (n-4).(n-15) chẵn

Nếu n lẻ 

=> n-15 chẵn

=> (n-4).(n-15) chẵn

b, n​2 - n - 1 = n(n-1)-1

Nếu n chẵn

=> n(n-1) chẵn

=> n(n-1)-1 lẻ

=> n2 - n - 1 lẻ

Nếu n lẻ

=> n-1 chẵn

=> n(n-1) chẵn

=> n(n-1)-1 lẻ

=> n2 - n - 1 lẻ

NÊN VÀO ĐỀ THI HOẶC BÀI TOÁN LIÊN QUAN NHA BẠN! 

6 tháng 7 2019

Ta thấy: a)Lẻ x Lẻ = Lẻ

                Chẳn nhân vói số nguyên nào cũng là chẵn

              b) Chẵn + Lẻ = Lẻ

                   Chẵn + Chẵn = Chẵn

                    Lẻ + Lẻ = Chẵn

a) Nếu n chẵn thì \(n=2k\left(k\in Z\right)\)

Khi đó \(n-6=2k-6\)là số chẵn

\(\left(n+3\right)\left(n-6\right)\)là số chẵn với n chẵn (1)

Nếu n lẻ thì\(n=2k+1\left(k\in Z\right)\)

Khi đó \(n+3=2k+1+3=2k+4\)là số chẵn

  \(\left(n+3\right)\left(n-6\right)\)là số chẵn với n lẻ  (2)

Từ (1) và (2) => (\(\left(n+3\right)\left(n-6\right)\)là số chẵn với mọi n

b) Nếu n chẵn thì \(n=2k\left(k\in Z\right)\)

Khi đó \(n^2-3n+3=4k^2-6k+3=2\left(2k^2-3k\right)+3\)là số lẻ

Nếu n lẻ thì \(n=2k+1\left(k\in Z\right)\)

Khi đó \(n^2-3n+3=\left(2k+1\right)^2-3\left(2k+1\right)+3\)

\(=4k^2+4k+1-6k-3+3\)

\(=4k^2-2k+1\)

\(=2k\left(2k-1\right)+1\)là số lẻ

Vậy \(n^2-3n+3\)là số lẻ với mọi n

 
26 tháng 1 2016

a, vì n, n+1 là hai số nguyên liên tiếp 

=> có một số chẵn 

=> tích chúng là 1 số chẵn

b, vì n thuộc Z nên 3n-4;3n+19 cũng thuộc Z

Vì hai thừa số đều mang tính chẵn ; lẻ 

=> tích chúng là số chẵn

c, n^2-n+1

=> n(n-1)+1 

Mà n; n-1 là 2 số nguyên liên tiếp

=> sẽ có 1 số chẵn => n(n-1) là chẵn => n(n-1)+1 là số lẻ 

=> n^2-n+1 là lẻ

26 tháng 1 2016

Khó thì mới hỏi chứ , luyên thuyên -_-

a) 2 hoặc -1

b)M={-3;-2;0;1;3;4;5}

16 tháng 6 2019

A=n2+17n+70 cùng tính chẵn lẻ vs n2+17n

+) n chẵn=> n2 và 17n đều chẵn => A chẵn

+) n lẻ => n2 và 17n đều lẻ => A chẵn

vậy A chẵn not n

19 tháng 8 2020

a. Vì A thuộc Z 

\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )

b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)

Vì B thuộc Z nên 5 / x - 3 thuộc Z

\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )

c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)

\(=x-2-\frac{2}{x+1}\)

Vi C thuộc Z nên 2 / x + 1 thuộc Z

\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)

\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )