Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Nếu n chẵn
=> n-4 chẵn
=> (n-4).(n-15) chẵn
Nếu n lẻ
=> n-15 chẵn
=> (n-4).(n-15) chẵn
b, n2 - n - 1 = n(n-1)-1
Nếu n chẵn
=> n(n-1) chẵn
=> n(n-1)-1 lẻ
=> n2 - n - 1 lẻ
Nếu n lẻ
=> n-1 chẵn
=> n(n-1) chẵn
=> n(n-1)-1 lẻ
=> n2 - n - 1 lẻ
NÊN VÀO ĐỀ THI HOẶC BÀI TOÁN LIÊN QUAN NHA BẠN!
Ta thấy: a)Lẻ x Lẻ = Lẻ
Chẳn nhân vói số nguyên nào cũng là chẵn
b) Chẵn + Lẻ = Lẻ
Chẵn + Chẵn = Chẵn
Lẻ + Lẻ = Chẵn
a) Nếu n chẵn thì \(n=2k\left(k\in Z\right)\)
Khi đó \(n-6=2k-6\)là số chẵn
\(\left(n+3\right)\left(n-6\right)\)là số chẵn với n chẵn (1)
Nếu n lẻ thì\(n=2k+1\left(k\in Z\right)\)
Khi đó \(n+3=2k+1+3=2k+4\)là số chẵn
\(\left(n+3\right)\left(n-6\right)\)là số chẵn với n lẻ (2)
Từ (1) và (2) => (\(\left(n+3\right)\left(n-6\right)\)là số chẵn với mọi n
b) Nếu n chẵn thì \(n=2k\left(k\in Z\right)\)
Khi đó \(n^2-3n+3=4k^2-6k+3=2\left(2k^2-3k\right)+3\)là số lẻ
Nếu n lẻ thì \(n=2k+1\left(k\in Z\right)\)
Khi đó \(n^2-3n+3=\left(2k+1\right)^2-3\left(2k+1\right)+3\)
\(=4k^2+4k+1-6k-3+3\)
\(=4k^2-2k+1\)
\(=2k\left(2k-1\right)+1\)là số lẻ
Vậy \(n^2-3n+3\)là số lẻ với mọi n
Bài 1:
Ta có: \(x^2+3x+9⋮x+3\)
\(\Rightarrow x\left(x+3\right)+9⋮x+3\)
Vì \(x\left(x+3\right)⋮x+3\)
nên \(9⋮x+3\)
\(\Rightarrow x+3\inƯ\left(9\right)\)
\(\Rightarrow x+3\in\left\{\pm1;\pm3;\pm9\right\}\)
\(\Rightarrow x\in\left\{-2;-4;0;-6;6;-12\right\}\)
Vậy \(x\in\left\{-2;-4;0;\pm6;-12\right\}\).
Bài 2:
a) Để \(\dfrac{n+5}{n-2}\in Z\)
thì \(n+5⋮n-2\)
\(\Rightarrow\left(n-2\right)+7⋮n-2\)
mà \(n-2⋮n-2\Rightarrow7⋮n-2\)
\(\Rightarrow n-2\inƯ\left(7\right)\)
\(\Rightarrow n-2\in\left\{\pm1;\pm7\right\}\)
...
b) Tương tự bài a.
Câu 1:
Để B là số nguyên
=>5 chia hết cho n-3 hay n-3 thuộc vào Ư(5)={1;5;-1;-5}
Ta có bảng:
n-3 | 1 | 5 | -1 | -5 |
n | 4 | 8 | 2 | -2 |
B | 5 | 1 | -5 | -1 |
=> n thuộc vào {4;8;2;-2} (thỏa mãn điều kiện n thuộc Z)
a/ \(\left(n-4\right)\left(n-15\right)\)
Do \(n\in Z\Leftrightarrow n-4;n-15\in Z\)
Vì 2 thừa số trên đều mang t.c chẵn lẻ
=> Tích của chúng là số chẵn
b/ \(n^2-n-1\)
\(\Leftrightarrow n\left(n-1\right)-1\)
Mà \(n;n-1\) là 2 số nguyên liên tiếp
=> sẽ có 1 chẵn, 1 lẻ
=> n (n - 1) là chẵn
=> n(n - 1) - 1 là lẻ