Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d=ƯCLN(3n-1;2n-1)
=>2(3n-1)-3(2n-1) chia hết cho d
\(\Leftrightarrow6n-2-6n+3⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>3n-1/2n-1 là phân số tối giản
Gọi d là (2n+5;3n+7)
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)
=> [6n+15 - ( 6n+14 )] \(⋮\) d
=> 1 \(⋮\)d
=> phân số trên tối giản
Gọi \(ƯCLN\)\((2n+1,6n+7)=d\)
Ta có : \(\hept{\begin{cases}2n+1⋮d\\6n+7⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}6(2n+1)⋮d\\2(6n+7)⋮d\end{cases}}\)
Làm nốt nhé :v
Gọi ( 2n+1 , 6n+7 )=d
=>\(\hept{\begin{cases}2n+1⋮d\\6n+7⋮d\end{cases}}\)
===>\(\hept{\begin{cases}6\cdot\left(2n+1\right)⋮d\\2\cdot\left(6n+7\right)⋮d\end{cases}}\)
=>\(\hept{\begin{cases}12n+6⋮d\\12n+14⋮d\end{cases}}\)
<=>(12n+14 - 12n+6) \(⋮\)d
<=>8 \(⋮\)d
=> d thuộc ước của 8.
Bạn tự cm d=1 nhé!
~ Chúc bạn hok tốt ~
a) \(A=\dfrac{6n+5}{3n+2}=\dfrac{2\left(3n+2\right)+1}{3n+2}\)
\(Để\) \(\dfrac{6n+5}{3n+2}\in Z\) \(\Rightarrow1⋮3n+2\)
\(\Rightarrow3n+2\inƯ\left(1\right)=\left(-1;1\right)\)
3n+2 | -1 | 1 |
n | -1 | \(\dfrac{-1}{3}\) |
a) Ta có: A=\(\dfrac{6n+5}{3n+2}=\dfrac{2\left(3n+2\right)+1}{3n+2}\\ \Rightarrow1⋮3n+2\)
Do đó 3n+2 là ước của 1.
Ư(1)={-1 ; 1}
Ta lập bảng sau:
3n+2 | -1 | 1 |
n | -1 | \(\dfrac{-1}{3}\) |
Vậy \(n\in\left\{-1;\dfrac{-1}{3}\right\}\).
b) Ta có: A=\(\dfrac{6n+5}{3n+2}=\dfrac{2\left(3n+2\right)+1}{3n+2}\\ \Rightarrow1⋮3n+2\)
Vậy phân số A là phân số tối giản.
a) Để \(A=\frac{3x+2}{x+1}\) là số nguyên thì:
\(3x+2⋮x+1\)
Ta có: 3x + 2 = 3(x + 1) - 1
mà 3x + 2 \(⋮\)x+1 => 3(x + 1) - 1\(⋮\)x + 1
có x + 1 \(⋮\)x+1 => -1 \(⋮\)x+1 hay x + 1 \(\in\)Ư(-1) = {1;-1}
Ta có bảng sau:
x+1 | 1 | -1 |
x | 0 | -2 |
Vậy để \(A=\frac{3x+2}{x+1}\) là số nguyên thì x = 0 hoặc x = 2
b) Gọi ƯCLN(3n + 2, 2n + 1) = d (d \(\in\)N)
\(=>\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}}\)
\(=>\hept{\begin{cases}2\left(3n+2\right)⋮d\\3\left(2n+1\right)⋮d\end{cases}}\)
\(=>\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}\)
\(=>\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(=>1⋮d\) \(=>d=1\)
Vậy phân số \(B=\frac{3n+2}{2n+1}\) là phân số tối giản
a)gọi d là ƯCLN (3n-1;6n-3)
\(\Rightarrow\hept{\begin{cases}3n-1⋮d\\6n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n-2⋮d\\6n-3⋮d\end{cases}}\)
=> (6n-3)-(6n-2)\(⋮\)d
\(\Rightarrow1⋮d\)
=>d=1
\(\Rightarrow\frac{3n-1}{6n-3}\)là pstg(ĐCCM)
b) Gọi d là ƯCLN(2n+11;3n+16)
\(\Rightarrow\hept{\begin{cases}2n+11⋮d\\3n+16⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+33⋮d\\6n+32⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+33\right)-\left(6n+32\right)⋮d\)
\(\Rightarrow1⋮d\)
=>d=1
Vậy\(\frac{2n+11}{3n+16}\) Là pstg(ĐCCM)
Tớ giải xong rồi ai nhớ nha k cho tôi đi.
Gọi \(d=ƯCLN\left(3n-1;6n-1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n-1⋮d\\6n-1⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6n-2⋮d\\6n-1⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(3n-1;6n-1\right)=1\)
\(\Leftrightarrow\dfrac{3n-1}{6n-1}\) tối giản
Gọi d là ƯCLN của 3n-1 và 6n-1
=> d⋮3n-1 và d⋮6n-1
Do 3n-1⋮d=>6n-2⋮d
=> (6n-1)-(6n-2)=1=>1⋮d
Vậy 3n-1/6n-1 là phân số tối giản(đpcm)