Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta biến đổi như sau : \(mn\left(m^2-n^2\right)=mn\left[\left(m^2-1\right)-\left(n^2-1\right)\right]=mn\left[\left(m-1\right)\left(m+1\right)-\left(n-1\right)\left(n+1\right)\right]\)
\(=n.\left(m-1\right).m.\left(m+1\right)-m.\left(n-1\right).n.\left(n+1\right)\)
Vì \(\left(m-1\right).m.\left(m+1\right)\) và \(\left(n-1\right).n.\left(n+1\right)\) là các tích của ba số nguyên liên tiếp
nên chia hết cho cả 2 và 3 . Mà \(\left(2,3\right)=1\) nên các tích này chia hết cho 6.
Từ đó suy ra điều phải chứng minh :)
Ta có
A = mn(m2 - n2) = mn(m - n)(m + n)
Ta chứng minh A chia hết cho 2
Với m,n có 1 số chẵn thì A chia hết cho 2
Với m,n đều là lẻ thì (m - n) chia hết cho 2
=> A chia hết cho 2 (1)
Chứng minh chia hết cho 3
Với m,n có 1 số chia hết cho 3 thì A chia hết cho 3
Với m,n cùng chia 3 dư 1 hoặc dư 2 thì (m - n) chia hết cho 3
Với m chia 3 dư 1 n chia 3 dư 2 (hoặc ngược lại thì (m + n) chia hết cho 3
=> A chia hết cho 3 (2)
Từ (1) và (2) kết hợp với 2 va 3 nguyên tố cùng nhau thì ta có A chia hết cho 6
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
đố bạn làm được câu này cho m thuộc N. cmr 5m^3+40m chia hết cho 15
\(x^4+6x^3+11x^2+6x\)
\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
\(x\in Z\Rightarrow x;x+1;x+2;x+3\) là 4 số nguyên liên tiếp
\(\Rightarrow x\left(x+1\right)\left(x+2\right)\left(x+3\right)\) là tích 4 số nguyên liên tiếp
Suy ra \(\hept{\begin{cases}\text{có tích 2 số chẵn liên tiếp }\Rightarrow⋮8\\\text{có một số chia hết 3}\\\left(8;3\right)=1\end{cases}}\)
\(\Rightarrow x\left(x+1\right)\left(x+2\right)\left(x+3\right)⋮24\)
\(b,n^2\left(n^4-1\right)\)
\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)
Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp
\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)
\(\Rightarrowđpcm\)
=>
Vì 6 chia hết cho thừa số nguyên tố 2 và 3.
Khi xn chia hết cho số nguyên tố d thì x chia hết cho d
Trong trường hợp thì hết cho 6 thì cũng chia hết cho số nguyên tố 2 và 3
nên mình nghĩ là đúng
Trong trường hợp chia hết cho 1 số chính phương thì chưa chắc đã đúng
đúng b nhé