K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2014

Đúng xét 3 TH 

TH1: n chia hết 3 suy ra n(n+1)(2n+1) chia hết cho 3

TH2 : n : 3 dư 1 suy ra n =3k+1 suy ra 2n+1=6k+2+1 chia hết cho 3 suy ra n(n+1)(2n+1) chia hết cho 3

TH3 : n : 3 dư 2 suy ra n =3k+2 suy ra n+1=3k+3 chia hết cho 3 suy ra n(n+1)(2n+1) chia hết cho 3

19 tháng 12 2014

Hà Văn Việt sai rồi vì nếu n=0 thì 0 chia hết cho 6(đúng)

24 tháng 9 2015

Ta có :

\(n^2\) chia hết cho p nghĩa là \(n.n\) chia hết cho p do đó n chia hết cho p

Vậy mệnh đề đẻo lại là n chia hết cho p thì n2 chia hết cho p là đúng       

24 tháng 9 2015

Đinh Đức Tài ns đúng

6 tháng 3 2018

Ta có: \(E=36^n+19^n-2^n\cdot2\)

Mặt khác: \(36\equiv19\equiv2\)(mod 17)

Do đó: \(VT\equiv2^n+2^n-2^n\cdot2\equiv0\)(mod 17)

Vậy .................

14 tháng 2 2016

1.1  Sai vì với n=3 => 2n + 1= 9 không là số nguyên tố

28 tháng 6 2017

Mệnh đề sai.
Mệnh đề phủ định là: Với... chia hết cho 11.  P=1+2+...+n=((1+n)n)/2 ,n=11=> P chia hết cho 11 
Vậy tồn tại số tự nhiên n để P  chia hết cho 11 : )

1 tháng 7 2015

\(2^{2n}\left(2^{2n+1}-1\right)-1=2.16^n-4^n-1\)

#Chứng minh quy nạp: \(2.16^n-4^n-1\) chia hết cho 9 (1)
+Với n = 1; 2; 3 thì (1) đúng.
+Giả sử (1) đúng với n = k , tức là \(2.16^k-4^k-1\)\(\left(k\ge1\right)\) chia hết cho 9.
Ta chứng minh (1) đúng với n = k+1, tức là chứng minh số sau chia hết cho 9:
\(2.16^{k+1}-4^{k+1}-1=16.2.16^k-4.4^k-1\)

\(=16\left(2.16^k-4^k-1\right)+12.4^k+15\)
\(\text{Mà }2.16^k-4^k-1\text{ chia hết cho 9 nên ta cần chứng minh }12.4^k+15\text{ chia hết cho 9, hay }4.4^k+5\text{ chia hết cho 3}\)

#Quy nạp phụ: \(4.4^n+5\)chia hết cho 3 (2)
+n = 1; 2; 3 thì (2) đúng
+Giả sử (2) đúng với n = k, tức là 4.4k + 5 chia hết cho 3.
Ta chứng minh (2) đúng với n = k+1, tức là chứng minh số sau chia hết cho 3:
4.4k+1 + 5 = 4.4.4 + 5 = 4(4.4k + 5) - 15 chia hết cho 3 vì 4.4k + 5 chia hết cho 3 và 15 chia hết cho 3.
Vậy 4.4n + 5 chia hết cho 3 với mọi n.

=> 12.4k + 15 chia hết cho 9
Mà 2.16k - 4k - 1 chia hết cho 9
=> 16.(2.16k - 4k -1) + 12.4k + 15 chia hết cho 9

Vậy \(2.16^n-4^n-1\) chia hết cho 9 với mọi số tự nhiên n (đpcm)