K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

\(=3^n\cdot9-2^n\cdot4+3^n-2\)

\(=3^n\left(9+1\right)-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot10\)

21 tháng 11 2021

giải thích cho mình từ chỗ = 3n (9+1) -2n .5 đi xuống  cho mk với

30 tháng 3 2020

Ghhg fhgcgh

11 tháng 2 2016

với n > 1,ta có:

M=3n+2-2n+2+3n-2n

=3n+2+3n-(2n+2+2n)

=3n.(32+1)-2n(22+1)

=3n.10-2n.5=3n.10-2n-1.10

=10.(3n-2n-1) chia hết cho 10 hay M tận cùng là 0(đpcm)

9 tháng 2 2023

Ta có:

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)

...

\(\dfrac{1}{n^2}< \dfrac{1}{n\left(n-1\right)}\)

\(\Rightarrow P< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n-1\right)}\)

\(\Rightarrow P< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(\Rightarrow P< 1-\dfrac{1}{n}< 1\)

\(\Rightarrow P< 1\)

16 tháng 7 2015

\(\text{a)}A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}

6 tháng 8 2018

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

24 tháng 12 2017

2.

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{n^2}\\ =\dfrac{1}{2.2}+\dfrac{1}{3.3}+....+\dfrac{1}{n.n}\\ < \dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{\left(n-1\right).n}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\)

24 tháng 12 2017

You k làm đc bài 1 ak -_- làm full cho người ta đi chớ :v

\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

\(\Rightarrow\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{a+b}{ab}\right)\)

\(\Rightarrow\dfrac{1}{c}=\dfrac{a+b}{2ab}\)

\(\Rightarrow ac+bc=2ab\)

\(\Rightarrow ac+bc-ab=ab\)

\(\Rightarrow ac-ab=ab-bc\)

\(\Rightarrow a\left(c-b\right)=b\left(a-c\right)\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\left(đpcm\right)\)