\(a_n=3n^2+6n+13\)

a. Chứng minh rằng nếu hai số

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 5 2018

Lời giải:

Ta thấy: \(a_n=3n^2+6n+13=3(n^2+2n+1)+10\)

\(=3(n+1)^2+10\)

Một số chính phương chia $5$ có thể dư $0,1,4$.

Do đó \((n+1)^2\equiv 1, 4\pmod 5\)

\(\Rightarrow a_n\equiv 3(n+1)^2+10\equiv 13, 22, 10\pmod 5\)

\(\Leftrightarrow a_n\equiv 2,3,0\pmod 5\)

Với \(a_n\not\vdots 5\Rightarrow a_n\equiv 2,3\pmod 5\)

Vậy $a_i,a_j$ không chia hết cho $5$ và có số dư khác nhau khi chia cho $5$ sẽ có một số dư $2$ và một số dư $3$

\(\Rightarrow a_i+a_j\equiv 2+3\equiv 5\equiv 0\pmod 5\)

Tức là $a_i+a_j$ chia hết cho $5$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
29 tháng 5 2018

b)

Theo phần a, \(a_n=3(n+1)^2+10\equiv 2,3,0\pmod 5\)

Nếu $a_n$ là một số chính phương thì \(a_n\equiv 0\pmod 5\) do số chính phương chia $5$ chỉ dư $0,1,4$

\(\Leftrightarrow 3(n+1)^2+10\vdots 5\)

\(\Leftrightarrow 3(n+1)^2\vdots 5\)

\(\Leftrightarrow (n+1)^2\vdots 5\Rightarrow n+1\vdots 5\) (do 5 là số nguyên tố)

\(\Rightarrow (n+1)^2\vdots 25\)

Do đó $a_n=3(n+1)^2+10$ là một số chia hết cho $5$ nhưng không chia hết cho $25$, suy ra $a_n$ không thể là số chính phương.

Thực ra mình lập câu hỏi này để giải một bài toán mình từng hỏi cho mọi người tham khảo, thì có một bạn nhờ mình giải.Link : http://olm.vn/hoi-dap/question/715065.htmlThấy Online Math chọn thì không nỡ bỏ quên :vĐề :  Chia số \(2013^{2016}\) thành tổng các số tự nhiên.Tìm số dư của tổng lập phương các số tự nhiên đó cho 6.Bài này chủ yếu là đánh lừa các bạn, vì không rõ ràng ở phần "...
Đọc tiếp

Thực ra mình lập câu hỏi này để giải một bài toán mình từng hỏi cho mọi người tham khảo, thì có một bạn nhờ mình giải.

Link : http://olm.vn/hoi-dap/question/715065.html

Thấy Online Math chọn thì không nỡ bỏ quên :v

Đề :  Chia số \(2013^{2016}\) thành tổng các số tự nhiên.

Tìm số dư của tổng lập phương các số tự nhiên đó cho 6.

Bài này chủ yếu là đánh lừa các bạn, vì không rõ ràng ở phần " tổng các số tự nhiên", chúng ta chẳng biết tổng của các số nào cả, có rất nhiều cách chia như vậy. Với những bài có dạng như này, mẹo là các bạn đưa về dạng tổng quá, sẽ dễ dàng chứng minh được.

Cách giải :

Đặt \(2013^{2016}=a_1+a_2+...+a_n\)

Tổng lập phương các số tự nhiên này là :

\(a_1^3+a_2^3+...+a_n^3\)

Có :

\(a_1^3+a_2^3+...+a_n^3-\left(a_1+a_2+...+a_n\right)\)

\(=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\)

\(=a_1\left(a_1^2-1\right)+a_2\left(a_2^2-1\right)+...+a_n\left(a_n^2-1\right)\)

\(=\left(a_1-1\right)a\left(a_1+1\right)+\left(a_2-1\right)a_2\left(a_2+1\right)+...+\left(a_n-1\right)a_n\left(a_n+1\right)\)

Thấy \(\left(a_1-1\right)a\left(a_1+1\right);\left(a_2-1\right)a_2\left(a_2+1\right);...;\left(a_n-1\right)a_n\left(a_n+1\right)\) là tích 3 số tự nhiên liên tiếp nên dễ dàng chứng minh nó chia hết cho 6.

Do đó \(a_1^3+a_2^3+...+a_n^3-\left(a_1+a_2+...+a_n\right)\) chia hết cho 6, tức \(a_1^3+a_2^3+...+a_n^3\) có cùng số dư với \(2013^{2016}\left(=a_1+a_2+...+a_n\right)\) khi chia cho 6.

Các bạn tự tìm số dư, vì phần còn lại khá đơn giản :)

0
23 tháng 11 2017

a chia cho 4, 5, 6 dư 1

nên (a - 1) chia hết cho 4, 5, 6 

=> (a - 1) là bội chung của (4,5,6)

=> a - 1 = 60n 

=> a = 60n+1 

với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7 

=> a = 7m 

Vậy 7m = 60n + 1 có 1 chia 7 dư 1

=> 60n chia 7 dư 6 mà 60 chia 7 dư 4 

=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6 

=> n = 5 a = 60.5 + 1 = 301 

10 tháng 12 2017

a chia cho 4, 5, 6 dư 1

nên (a - 1) chia hết cho 4, 5, 6 

=> (a - 1) là bội chung của (4,5,6)

=> a - 1 = 60n 

=> a = 60n+1 

với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7 

=> a = 7m 

Vậy 7m = 60n + 1 có 1 chia 7 dư 1

=> 60n chia 7 dư 6 mà 60 chia 7 dư 4 

=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6 

=> n = 5 a = 60.5 + 1 = 301 

              

27 tháng 2 2020

a) Ta có: \(2018^n-1964^n⋮3\)

\(2032^n-1984^n⋮3\)

nên An chia hết cho 3

Mà \(2018^n-1984^n⋮17\)

\(2032^n-1964^n⋮17\)

nên An chia hết cho 17

Vậy A chia hết cho 51

27 tháng 2 2020

b) Ta có: An đồng dư 3^n +2^n-2.4^n (mod5)

và An đồng dư 2^n + 7^n -2^n-4^n (mod9)

Vậy An chia hết cho 45 khi n có dạng 12k

23 tháng 1 2018

là 10 nhé

3 tháng 4 2020

2. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath