\(\dfrac{7n+4}{9n+5}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2017

Giả sử ước chung của 7n+4 và 9n+5 là d; ta có:

-\(\left(7n+4\right)⋮d=>9\left(7n+4\right)=\left(63n+36\right)⋮d\)

- \(\left(9n+5\right)⋮d=>7\left(9n+5\right)=\left(63n+35\right)⋮d\)

Do cả hai số đều chia hết cho d nên hiệu cũng chia hết cho d;

=> (63n + 36) - ( 63n + 35) \(⋮\)d=> \(1⋮d=>d=\pm1\)

Vậy phân số trên luôn tối giản;

CHÚC BẠN HỌC TỐT...

8 tháng 7 2017

Gọi \(d\)\(UCLN\left(7n+4;9n+5\right)\)

\(\Rightarrow7n+4⋮d\Rightarrow9\left(7n+4\right)⋮d\Rightarrow63n+36⋮d\)

\(\Rightarrow9n+5⋮d\Rightarrow7\left(9n+5\right)⋮d\Rightarrow63n+35⋮d\)

\(\Rightarrow\left(63n+36\right)-\left(63n+35\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow\dfrac{7n+4}{9n+5}\) tối giản với mọi \(n\in N\)

Gọi d là ƯCLN(9n+5;2n+1)

Ta có 9n+5\(⋮\)d;2n+1\(⋮\)d

     =>2*(9n+5)\(⋮\)d;9*(2n+1)\(⋮\)d

     =>18n+10\(⋮\)d;18n+9\(⋮\)d

=>[(18n+10)-(18n+9)]\(⋮\)d

=>[18n+10-18n-9]\(⋮\)d

=>1\(⋮\)d

=>d=1

Vì ƯCLN(9n+5;2n+1)=1 Nên phân số \(\frac{9n+5}{2n+1}\) luôn là phân số tối giản(nEN*)

Đề phải là nEN* hoặc n>1

Gọi d là ƯCLN(7n+4;5n+3)

Ta có:7n+4\(⋮\)d;5n+3\(⋮\)d

=>5*(7n+4)\(⋮\)d;7*(5n+3)\(⋮\)d

=>35n+20\(⋮\)d;35n+21\(⋮\)d

=>[(35n+21)-(35n+20)]\(⋮\)d

=>[35n+21-35n-20]\(⋮\)d

=>1\(⋮\)d

=>d=1

Vì ƯCLN(7n+4;5n+3)=1 nên phân số \(\frac{7n+4}{5n+3}\) luôn luôn tối giản(nEN)

9 tháng 5 2016

Gọi d là UCLN (7n+4;5n+3)

=>*\(\left(7n+4\right)⋮d\Rightarrow5.\left(7n+4\right)⋮d\)

     *\(\left(5n+3\right)⋮d\Rightarrow7.\left(5n+3\right)⋮d\)

Suy ra: 5.(7n+4)-7.(5n+3) chia hết cho d

=>35n+20-35n-21 chia hết cho d

=>-1 chia hết cho d

=> d chỉ có thể là 1 

=> P/s \(\frac{7n+4}{5n+3}\) tối giản

24 tháng 3 2017

Ta có :

\(7n^2+1\) \(⋮\) \(6\)

\(\Rightarrow\left\{{}\begin{matrix}7n^2+1⋮3\\7n^2+1⋮2\end{matrix}\right.\) (do \(6=BCNN\left(2,3\right)\) )

\(\Rightarrow\left\{{}\begin{matrix}7n^2⋮̸3\\7n^2⋮2̸\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}n^2⋮3̸\\n^2⋮2̸\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}n⋮3̸\\n⋮2̸\end{matrix}\right.\)

\(2;3\) là những số nguyên tố

\(\Rightarrow\dfrac{n}{2};\dfrac{n}{3}\) là những phan số tối giản

Vậy phân số \(\dfrac{7n^2+1}{6}\in N\) \(\left(n\in N\right)\) thì các phân số \(\dfrac{n}{2};\dfrac{n}{3}\) là những phân số tối giản

\(\rightarrowđpcm\)

Chúc bn học tốt!!

4 tháng 8 2017

\(\frac{n+3}{n+4}\)

Gọi d=U7CLN(n+3,n+4)

\(\Rightarrow\hept{\begin{cases}\left(n+3\right)⋮d\\\left(n+4\right)⋮d\end{cases}}\)

\(\Leftrightarrow\left(n+4\right)-\left(n+3\right)⋮d\)

\(\Leftrightarrow1⋮d\)   \(\Leftrightarrow d=1\)

          Vậy  \(\frac{n+3}{n+4}\)là phân số tối giản

( *Bạn làm theo pp: Phân số tối giản khi U7CLN(tử,mẫu)=1

  *Cái dòng (n+4) - (n+3) thì mấy bài tương tự, cái dòng đó ta sẽ lấy số lớn trừ số nhỏ chứ không nhất thiết phải lấy số dưới trừ số trên)

Mấy bài kia bạn làm tương tự nha! Chúc bạn học giỏi!!!

2 tháng 8 2017

Gọi d là ƯCLN của 7n và 7n + 1

=> 7n chia hết cho d và 7n + 1 chia hết cho d

=> (7n + 1) - 7n chia hết cho d

=> 1 chia hết cho d

=> d = 1 

Vậy phân số \(\frac{7n}{7n+1}\) tối giản với mọi n 

2 tháng 8 2017

Gọi ước chung lớn nhất cảu 7n và 7n+1 là d 

Ta có: 7n chia hết cho d ; 7n+1 chia hết cho d 

=> 7n+1 - 7n chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> uwocschung lớ nhất của 7 n và 7n+1 là 1

=> \(\frac{7n}{7n+1}\)tối giản

=> đpcm

16 tháng 8 2018

Giả sử phân số sau chưa tối giản

\(\Rightarrow2n+3⋮d;4n+8⋮d\left(d\in N;d>1\right)\)

\(2n+3⋮d\Rightarrow4n+6⋮d\)

\(\Rightarrow4n+8-4n-6⋮d\)

\(\Rightarrow2⋮d\)

Vậy d có thể = 2 

Vậy p/s sau vẫn có thể tối giản đc

16 tháng 8 2018

Giả sử ƯCLN  (2n+3;4n+8)=d

\(\Rightarrow4n+8⋮d\)\(4n+8=2\left(2n+4\right)\)\(\Rightarrow2n+4⋮d\)

\(\Rightarrow d=2n+4-\left(2n+3\right)\)\(=2n+4-2n-3\)\(=1\)

Do d=1 thì \(\frac{2n+3}{4n+8}\)là số tối giản với bất kì  số tư nhiên n

Chú bạn hok tốt

2 tháng 6 2018

Gợi Ư CLN\(\left(2n+3;4n+8\right)=d\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\Rightarrow2.\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow d=1;2\)

\(+d=2\Rightarrow2n+3⋮2\)

Mak 2n+3 ko chia hết cho 2

\(\Rightarrow d\ne2\)

\(\Rightarrow d=1\)

\(\Rightarrowđpcm\)

6 tháng 4 2017

Gọi d là WCLN (n + 1; 2n + 3) nên ta có :

\(n+1⋮d\) và \(2n+3⋮d\)

\(\Rightarrow2\left(n+1\right)⋮d\) và \(2n+3⋮d\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Do đó : \(A=\frac{n+1}{2n+3}\) tối giản (ĐPCM)

6 tháng 4 2017

Gọi d= ƯCLN(n+1;2n+3)

=> n+1 :d

    2n+3 : d  ( mình viết dấu : thay cho dấu chia hết nhé)

=>2.(n+1) :d

    2n+3 :d

=>2n+2:d

  2n+3:d

=>(2n+3)-(2n+2):d

=>1:d

=>d=1

Vậy ƯCLN(n+1;2n+3)=1

Vì ƯCLN(n+1;2n+3)=1 nên A tối giản với n là số tự nhiên

14 tháng 7 2015

Gọi ƯCLN(n+1; 2n+3) là d. Ta có:

n+1 chia hết cho d => 2n+2 chia hết cho d

2n+3 chia hết cho d

=> 2n+3-(2n+2) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> \(\frac{n+1}{2n+3}\)là phân số tối giản (Đpcm)

26 tháng 6 2018

gọi d là ƯCLN của \(\frac{n+1}{2n+3}\)ta có:

\(\text{(2n+3)-(n-1) ⋮d}\)

\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow2n-2n+3-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

vậy \(\frac{n+1}{2n+3}\)là p/s tối giản với mọt số tự nhiên n