K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2020

Gọi (2n+1,2n+3) là d. ĐK  : \(d\inℕ^∗\)

Ta có : (2n+1,2n+3)=d

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)

\(\Rightarrow\)(2n+3)-(2n+1)\(⋮\)d

\(\Rightarrow\)2\(⋮\)d

\(\Rightarrow d\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Mà 2n+1 là số nguyên lẻ nên \(d=\pm1\)

\(\Rightarrow\left(2n+1,2n+3\right)=\pm1\)

\(\Rightarrow\)2n+1 và 2n+3 là 2 số nguyên tố cùng nhau

\(\Rightarrow\)Phân số \(A=\frac{2n+1}{2n+3}\)tối giản với mọi số tự nhiên n  (đpcm)

28 tháng 3 2020

Gọi d là ƯCLN (2n+1; 2n+3) \(\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)

=> (2n+3)-(2n+1) \(⋮\)d

=> 2 \(⋮\)d

Mà d\(\inℕ^∗\)=> d={1;2}

Mà 2n+1 không chia hết cho 2

=> d=1

=> ƯCLN (2n+1;2n+3)=1

=> đpcm

28 tháng 3 2020

Cảm ơn bạn

20 tháng 7 2020

Gọi d là ước chung của 2n+5 và 2n+3

=> 2n+5 chia hết cho d và 2n+3 chia hết cho d

=> (2n+5)-(2n+3)=2 chia hết cho d => d={1;2}

Do 2n+5 và 2n+3 lẻ => d lẻ => d=1

=> phân số trên tối giản với mọi n

21 tháng 7 2020

Cảm ơn bạn NGUYỄN NGỌC ANH MINH nhiều

23 tháng 4 2020

B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)

=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)

Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)

<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}

Lập bảng:

 2n + 3 1 -1 17 -17
  n -1 -2 7 -10

Vậy ....

23 tháng 4 2020

Bài 2:

Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)

=> 42n-7-42n+6 chia hết cho d

=> -1 chia hết cho d

mà d thuộc N* => d=1

=> ƯCLN (7n-1; 6n-1)=1

=> đpcm

Gọi ƯCLN(n+1,2n+1) là d

Có n+1\(⋮\)d

2n+1\(⋮\)d

\(\Rightarrow\)2(n+1)\(⋮\)d

2n+1\(⋮\)d

\(\Rightarrow\)2n+2\(⋮\)d

2n+1\(⋮\)d

\(\Rightarrow\)(2n+2)-(2n+1)\(⋮\)d

\(\Rightarrow\)1\(⋮\)d

\(\Rightarrow\)d\(\in\)Ư(1)={1}

Vì ƯCLN(n+1,2n+1)là 1

nên n+1/2n+1 là phân số tối giản

1 tháng 3 2020

Gọi ƯCLN(n+1, 2n+1) là d

suy ra n +1 chia hết cho d suy ra 2. (n+1) chia hết cho d suy ra 2n +2 chia hết cho d  (1)

       2n+1 chia hết cho d (2)

Từ (1) và (2) suy ra 2n+2- (2n+1) chia hết cho d

suy ra 2n+2-2n-1 chia hết cho d

suy ra 1 chia hết cho d

suy ra d=1

vậy phân số \(\frac{n+1}{2n+1}\)là phân số tối giản

18 tháng 3 2021

a) Vì n\(\inℕ\)nên n + 1 \(\inℕ\)và 2n + 3\(\inℕ\).

Gọi d \(\in\)ƯCLN ( n + 1 , 2n + 3 )

\(\Rightarrow n+1⋮d\)và \(2n+3⋮d\)

\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\in\left\{1;-1\right\}\)

\(\Rightarrow\frac{n+1}{2n+3}\)là phân số tối giản .

                           Vậy \(\frac{n+1}{2n+3}\)tối giản \(\forall n\inℕ\).

18 tháng 3 2021

b) TƯƠNG TỰ CÂU (a)

22 tháng 2 2020

thì nó là tối giản rồi còn gì

22 tháng 2 2020

nè mình

26 tháng 3 2021
Gọi d là UCLN (12n+1;12n+3), d thuộc N sao -->12n+1 = 5(12n+1) = 60n+5chia hết cho d 30n+2=2(30n+2)=60n+4 chia hết cho d ->(60n+5)-(60n+4) chia hết cho d <=> 1 chia hết cho d => d=1=> ps 12n+1/30n+2 tối giản
DD
4 tháng 3 2022

a) Đặt \(d=\left(n+3,n+4\right)\)

Suy ra \(\hept{\begin{cases}n+3⋮d\\n+4⋮d\end{cases}}\Rightarrow\left(n+4\right)-\left(n+3\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

b) Đặt \(d=\left(2n+5,4n+11\right)\)

Suy ra \(\hept{\begin{cases}2n+5⋮d\\4n+11⋮d\end{cases}}\Rightarrow\left(4n+11\right)-2\left(n+5\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

c) Đặt \(d=\left(3n+4,4n+5\right)\)

Suy ra \(\hept{\begin{cases}3n+4⋮d\\4n+5⋮d\end{cases}}\Rightarrow4\left(3n+4\right)-3\left(4n+5\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm.