K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

3 tháng 5 2016

sao ma kho 

27 tháng 1 2022

21 tháng 2 2016

a.gọi ước chung bất kì của n+1 và 2n+3 là d (d huộc n)

ta có 2(n+1)-(2n+3)chia hết cho d

2n+2-2n-3=2-3=-1

=> d thuộc ước của -1

kết luận

b.cũng làm như í trên 3(2n+3) và 2(3n+5)

k nha

8 tháng 6 2017

gọi ( n3 + 2n ; n4 + 3n2 + 1 ) = d

\(\Leftrightarrow\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n^4+2n^2⋮d\\n^4+3n^2+1⋮d\end{cases}\Leftrightarrow n^2+1⋮d}\)

Mà n4 + 3n2 + 1 \(⋮\)d

= n4 + 2n2 + n2 + 1

= ( n4 + 2n2 + 1 ) + n2 

= ( n2 + 1 ) 2 + n2 \(⋮\)d

\(\Rightarrow\)n2 \(⋮\)d

\(\Leftrightarrow\)\(⋮\)d

8 tháng 6 2017

Tham khảo nha bạn! Mình không có thời gian!

Link:

tth 

Đs

DD
31 tháng 8 2021

a) Đặt \(d=\left(15n+1,30n+1\right)\).

Suy ra \(\hept{\begin{cases}15n+1⋮d\\30n+1⋮d\end{cases}}\Rightarrow2\left(15n+1\right)-\left(30n+1\right)=1⋮d\Rightarrow d=1\).

Ta có đpcm. 

b) Đặt \(d=\left(n^3+2n,n^4+3n^2+1\right)\).

Suy ra \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\Rightarrow\left(n^4+3n^2+1\right)-n\left(n^3+2n\right)=n^2+1⋮d\)

\(\Rightarrow\left(n^4+3n^2+1\right)-n^2\left(n^2+1\right)-2\left(n^2+1\right)=-1⋮d\)

Suy ra \(d=1\).

Suy ra đpcm. 

31 tháng 3 2020

Để chứng minh một phân số là tối giản, ta cần chứng minh ƯCLN (tử, mẫu) = 1

Bài giải

a) Ta có phân số: \(\frac{n+1}{3n+4}\)(n \(\inℕ\))

Gọi ƯCLN (n + 1; 3n + 4) là d    (d \(\inℕ^∗\))

=> n + 1 \(⋮\)d;   3n + 4 \(⋮\)d

=> 3n + 4 - 3(n + 1) \(⋮\)d

=> 1 \(⋮\)d

=> ƯCLN (n + 1; 3n + 4) = 1

=> \(\frac{n+1}{3n+4}\)là phân số tối giản

=> ĐPCM

b) Ta có phân số: \(\frac{2n+3}{3n+5}\)(n \(\inℕ\))

Gọi ƯCLN (2n + 3; 3n + 5) là d  (d \(\inℕ^∗\))

=> 2n + 3 \(⋮\)d;      3n + 5 \(⋮\)d

=> 2(3n + 5) - 3(2n + 3) \(⋮\)d

=> 1 \(⋮\)d

=> ƯCLN (2n + 3; 3n + 5) = 1

=> \(\frac{2n+3}{3n+5}\)là phân số tối giản

=> ĐPCM

31 tháng 3 2020

a) Gọi (n+1,3n+4) là d ( d thuộc N* )

=> n+1 và 3n+4 đều chia hết cho d

=> (3n+4)-3(n+1) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> (n+1,3n+4)=1 nên n+1 và 3n+4 là 2 SNT cùng nhau

=> P/s n+1/3n+4 tối giản với mọi n thuộc N  (đpcm)

b) Gọi (2n+3,3n+5) là d  (d thuộc N*)

=> 2n+3 chia hết cho d và 3n+5 chia hết cho d

=> (3n+5)-(2n+3) chia hết cho d

=> 2(3n+5)-3(2n+3) chia hết cho d

=> 6n+10-6n+9 chia hết cho d

=> d=1

=> (2n+3,3n+5)=1 nên 2n+3 và 3n+5 là 2 SNT cùng nhau

=> P/s 2n+3/3n+5 tối giản với mọi n thuộc N  (đpcm)

22 tháng 3 2021

đặt:ƯCLN của 2n + 3/3n +4 là d (d thuộc(nên viết kí hiệu) Z

suy ra (2n+3)chia hết cho (kí hiệu) d

           (3n+4)chia hết cho d

suy ra 3.(2n + 3)chia hết cho d

           2.(3n +4)chia hết cho d

suy ra 3.2n+3.3chia hết cho d

           2.3n+2.4chia hết cho d

suy ra 6n+9 chia hết cho d

          6n +8 chia hết cho d

suy ra (6n+9)-(6n+8)chia hết cho d

suy ra 1chia hết cho d

 suy ra d =1

vậy 2n+3/3n+4

22 tháng 3 2021

chu mi la , mai mik ik hok ùi ,chu mi la