\(k\), kí hiệu là \(k!=1.2.3.............k\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta chứng minh : A = 1!+2!+...+n! ko phải là số chính phương

ta có: 1!+2!+3!+4! chia 10 dư 3

5!+6!+...+n! chia hết cho 10

vậy A chia 10 dư 3 => A ko phải là số chính phương nên A ko thể là lũy thừa vs số mũ chẵn (1)

* chứng minh A ko thể là lũy thừa vs số mũ lẻ

+) với n 4 => 1!+2!+3!+4! = 33 ko là lũy thừa 1 số nguyên

+) n lớn hơn hoặc bằng 5

ta có: 1!+2!+3!+4!+5! chia hết cho 9

6!+7!+...+n! chia hết cho 9

=> A chia hết cho 9

+) ta thấy 9!+10!+...+n! chia hết cho 7

còn 1!+2!+...+8! chia 27 dư 9 (2)

từ (1) và (2) => A ko phải là lũy thừa của 1 số nguyên ( vs n>3 ; b>1 )

19 tháng 4 2015

* Ta chứng minh A = 1!+2!+....+n! không phải là số chính phương

Ta có 1!+2!+3!+4! chia 10 dư 3

5!+6!+....+n! chia hết cho 10

Vậy A chia 10 dư 3 => A không phải là số chính phương nên A không thể là lũy thừa với số mũ chẵn      (1)

* Chứng mịnh A không thể là lũy thừa với mũ lẻ

+) Với n= 4 => 1!+2!+3!+4!=33 không là lũy thừa một số nguyên

+) Với n lớn hơn hoặc bằng 5

Ta có 1!+2!+3!+4!+5! chia hết cho 9

6!+7!+....+n! chia hết cho 9

=> A chia hết cho 9

+) Ta thấy 9!+10!+...+n! chia hết cho 7

còn 1!+2!+...+8! chia cho 27 dư 9            (2)

Từ (1) và (2) suy ra A không phải là lũy thừa của một số nguyên ( với n>3 ; b>1)

15 tháng 6 2015

* Ta chứng minh A = 1!+2!+....+n! không phải là số chính phương

Ta có 1!+2!+3!+4! chia 10 dư 3

5!+6!+....+n! chia hết cho 10

Vậy A chia 10 dư 3 => A không phải là số chính phương nên A không thể là lũy thừa với số mũ chẵn      (1)

* Chứng mịnh A không thể là lũy thừa với mũ lẻ

+) Với n= 4 => 1!+2!+3!+4!=33 không là lũy thừa một số nguyên

+) Với n lớn hơn hoặc bằng 5

Ta có 1!+2!+3!+4!+5! chia hết cho 9

6!+7!+....+n! chia hết cho 9

=> A chia hết cho 9

+) Ta thấy 9!+10!+...+n! chia hết cho 7

còn 1!+2!+...+8! chia cho 27 dư 9            (2)

Từ (1) và (2) suy ra A không phải là lũy thừa của một số nguyên ( với n>3 ; b>1)

15 tháng 6 2015

oggy và những chú gián làm chừng chừng

15 tháng 6 2015

* Ta chứng minh A = 1!+2!+....+n! không phải là số chính phương

Ta có 1!+2!+3!+4! chia 10 dư 3

5!+6!+....+n! chia hết cho 10

Vậy A chia 10 dư 3 => A không phải là số chính phương nên A không thể là lũy thừa với số mũ chẵn      (1)

* Chứng mịnh A không thể là lũy thừa với mũ lẻ

+) Với n= 4 => 1!+2!+3!+4!=33 không là lũy thừa một số nguyên

+) Với n lớn hơn hoặc bằng 5

Ta có 1!+2!+3!+4!+5! chia hết cho 9

6!+7!+....+n! chia hết cho 9

=> A chia hết cho 9

+) Ta thấy 9!+10!+...+n! chia hết cho 7

còn 1!+2!+...+8! chia cho 27 dư 9            (2)

Từ (1) và (2) suy ra A không phải là lũy thừa của một số nguyên ( với n>3 ; b>1)

15 tháng 6 2015

Lâu rồi không học quên mất

30 tháng 11 2016

b1a c đg bd sai

b2a sai b sai c đg

b3 a 2 b 5

22 tháng 4 2019

Với  \(n>3\) thì ta có:

\(1!+2!+3!+4!=33\) mà  \(5!;6!;7!;.....\) đều có tận cùng là 0 nên ta có thể biểu diễn lại A:

\(A=1!+2!+3!+....+n!=\overline{.....3}\) không thể biểu diễn dưới dạng  \(a^b\) với \(a;b\in Z;b>1\)

5 tháng 3 2019

19A=192010+19/192010+1=192010+1+18/192010+1=192010+1/192010+1+18/192010+1=1+18/192010

19B=192009+19/192009+1=192009+1+18/192009+1=192009+1/192009+1+18/192009+1=1+18/192009

Vậy A<B

Xin lỗi mình chịu câu trên

5 tháng 3 2019

Ta có A=\(\frac{19^{2009}+1}{19^{2010}+1}\)                                    Ta có:B=\(\frac{19^{2008}+1}{19^{2009}+1}\)

                                                                               19B=\(\frac{19^{2009}+19}{19^{2009}+1}\)

      19A=\(\frac{19^{2010}+19}{19^{2010}+1}\)                                       19B=\(\frac{19^{2009}+1+18}{19^{2009}+1}\)

      19A=\(\frac{19^{2010}+1+18}{19^{2010}+1}\)                                19B=\(1+\frac{18}{19^{2009}+1}\)

      19A=\(1+\frac{18}{19^{2010}+1}\)

                         Vì \(\frac{18}{19^{2010}+1}< \frac{18}{19^{2009}+1}\)nên \(19A< 19B\)

                          \(\Leftrightarrow A< B\)

                            Vậy\(A< B\)