Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Ta chứng minh A = 1!+2!+....+n! không phải là số chính phương
Ta có 1!+2!+3!+4! chia 10 dư 3
5!+6!+....+n! chia hết cho 10
Vậy A chia 10 dư 3 => A không phải là số chính phương nên A không thể là lũy thừa với số mũ chẵn (1)
* Chứng mịnh A không thể là lũy thừa với mũ lẻ
+) Với n= 4 => 1!+2!+3!+4!=33 không là lũy thừa một số nguyên
+) Với n lớn hơn hoặc bằng 5
Ta có 1!+2!+3!+4!+5! chia hết cho 9
6!+7!+....+n! chia hết cho 9
=> A chia hết cho 9
+) Ta thấy 9!+10!+...+n! chia hết cho 7
còn 1!+2!+...+8! chia cho 27 dư 9 (2)
Từ (1) và (2) suy ra A không phải là lũy thừa của một số nguyên ( với n>3 ; b>1)
* Ta chứng minh A = 1!+2!+....+n! không phải là số chính phương
Ta có 1!+2!+3!+4! chia 10 dư 3
5!+6!+....+n! chia hết cho 10
Vậy A chia 10 dư 3 => A không phải là số chính phương nên A không thể là lũy thừa với số mũ chẵn (1)
* Chứng mịnh A không thể là lũy thừa với mũ lẻ
+) Với n= 4 => 1!+2!+3!+4!=33 không là lũy thừa một số nguyên
+) Với n lớn hơn hoặc bằng 5
Ta có 1!+2!+3!+4!+5! chia hết cho 9
6!+7!+....+n! chia hết cho 9
=> A chia hết cho 9
+) Ta thấy 9!+10!+...+n! chia hết cho 7
còn 1!+2!+...+8! chia cho 27 dư 9 (2)
Từ (1) và (2) suy ra A không phải là lũy thừa của một số nguyên ( với n>3 ; b>1)
* Ta chứng minh A = 1!+2!+....+n! không phải là số chính phương
Ta có 1!+2!+3!+4! chia 10 dư 3
5!+6!+....+n! chia hết cho 10
Vậy A chia 10 dư 3 => A không phải là số chính phương nên A không thể là lũy thừa với số mũ chẵn (1)
* Chứng mịnh A không thể là lũy thừa với mũ lẻ
+) Với n= 4 => 1!+2!+3!+4!=33 không là lũy thừa một số nguyên
+) Với n lớn hơn hoặc bằng 5
Ta có 1!+2!+3!+4!+5! chia hết cho 9
6!+7!+....+n! chia hết cho 9
=> A chia hết cho 9
+) Ta thấy 9!+10!+...+n! chia hết cho 7
còn 1!+2!+...+8! chia cho 27 dư 9 (2)
Từ (1) và (2) suy ra A không phải là lũy thừa của một số nguyên ( với n>3 ; b>1)
Với \(n>3\) thì ta có:
\(1!+2!+3!+4!=33\) mà \(5!;6!;7!;.....\) đều có tận cùng là 0 nên ta có thể biểu diễn lại A:
\(A=1!+2!+3!+....+n!=\overline{.....3}\) không thể biểu diễn dưới dạng \(a^b\) với \(a;b\in Z;b>1\)
19A=192010+19/192010+1=192010+1+18/192010+1=192010+1/192010+1+18/192010+1=1+18/192010
19B=192009+19/192009+1=192009+1+18/192009+1=192009+1/192009+1+18/192009+1=1+18/192009
Vậy A<B
Xin lỗi mình chịu câu trên
Ta có A=\(\frac{19^{2009}+1}{19^{2010}+1}\) Ta có:B=\(\frac{19^{2008}+1}{19^{2009}+1}\)
19B=\(\frac{19^{2009}+19}{19^{2009}+1}\)
19A=\(\frac{19^{2010}+19}{19^{2010}+1}\) 19B=\(\frac{19^{2009}+1+18}{19^{2009}+1}\)
19A=\(\frac{19^{2010}+1+18}{19^{2010}+1}\) 19B=\(1+\frac{18}{19^{2009}+1}\)
19A=\(1+\frac{18}{19^{2010}+1}\)
Vì \(\frac{18}{19^{2010}+1}< \frac{18}{19^{2009}+1}\)nên \(19A< 19B\)
\(\Leftrightarrow A< B\)
Vậy\(A< B\)
ta chứng minh : A = 1!+2!+...+n! ko phải là số chính phương
ta có: 1!+2!+3!+4! chia 10 dư 3
5!+6!+...+n! chia hết cho 10
vậy A chia 10 dư 3 => A ko phải là số chính phương nên A ko thể là lũy thừa vs số mũ chẵn (1)
* chứng minh A ko thể là lũy thừa vs số mũ lẻ
+) với n 4 => 1!+2!+3!+4! = 33 ko là lũy thừa 1 số nguyên
+) n lớn hơn hoặc bằng 5
ta có: 1!+2!+3!+4!+5! chia hết cho 9
6!+7!+...+n! chia hết cho 9
=> A chia hết cho 9
+) ta thấy 9!+10!+...+n! chia hết cho 7
còn 1!+2!+...+8! chia 27 dư 9 (2)
từ (1) và (2) => A ko phải là lũy thừa của 1 số nguyên ( vs n>3 ; b>1 )