Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Vế trái bằng vế phải nên đẳng thức được chứng minh.
* Với n = 1, ta có: 2 - 1 2 = 9 - 8
* Với n = 2, ta có: 3 - 2 2 = 25 - 24
* Với n = 3, ta có: 4 - 3 2 = 49 - 48
* Với n = 4, ta có: 5 - 4 2 = 81 - 80
Em mới hc lớp 7 thui cho nên ko bít làm đúng ko
Vì n^3 chia hết cho n^4 và 2n chia hết cho 3n mà dưới mẫu có cộng thêm 1
Cho nên ps trên tối giản
kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh
Ta có: A=n(n+1)(2n+1)
\(=n\left(n+1\right)\left(2n+2-1\right)\)
\(=n\left(n+1\right)\left(n+2\right)+n\left(n+1\right)\left(n-1\right)\)
Vì n;n+1;n+2 là ba số nguyên liên tiếp nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)
hay \(n\left(n+1\right)\left(n+2\right)⋮6\)
Vì n-1;n;n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3!\)
hay \(\left(n-1\right)n\left(n+1\right)⋮6\)
\(\Leftrightarrow A⋮6\)
\(S=\left[\left(2n+1-1\right):2+1\right]\times\left(2n+1+1\right):2\)
\(S=\left(n+1\right)\times\left(2n+2\right):2\)
\(S=\left(n+1\right)\times\left(n+1\right)\)
\(S=\left(n+1\right)^2\)( dpcm )
nếu \(n=0\) thì ta thấy bài toán đúng
giả sử \(n=k\) thì ta có : \(5^{k+2}+26.5^k+8^{2k+1}⋮59\)
khi đó nếu \(n=k+1\) thì ta có :
\(5^{n+2}+26.5^n+8^{2n+1}=5^{k+3}+26.5^{k+1}+8^{2k+3}\)
\(=5.5^{k+2}+5.26.5^k+8^2.8^{2k+1}=5.5^{k+2}+5.26.5^k+5.8^{2k+1}+59.8^{2k+1}\)
\(=5\left(5^{k+2}+26.5^k+8^{2k+1}\right)+59.8^{2k+1}⋮59\)
\(\Rightarrow\left(đpcm\right)\)
Ta có: \(2^{2n+1}=2.2^{2n}\) chia cho \(3\) dư \(2\forall n\in N.\)
\(\Rightarrow2^{2n+1}=3k+2\left(k\in N\right)\)
\(\Rightarrow A=2^{2^{2n+1}}+31=2^{3k+2}+31=4\left(2^3\right)^k+31=4.8^k+31\)
Lại có: \(8^k\) chia cho \(7\) dư \(1\forall k\in N\)
\(\Rightarrow4.8^k\) chia cho \(7\) dư \(4\forall k\in N\)
\(\Rightarrow4.8^k+31\) chia hết cho \(7\forall k\in N\)
\(\Rightarrow A=2^{2^{2n+1}}+31\) chia hết cho \(7\forall n\in N\)
Mà: \(A>7\)
\(\RightarrowĐpcm\)