Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(x+3\right)^3-\left(x+9\right)\left(x^2+27\right)\)
\(=x^3+9x^2+27x+27-\left[x^3+27x+9x^2+243\right]\)
\(=27-9.27\)
\(=8.27=216\)
DO đó ...
\(x\left(x+2\right)\left(x+3\right)\left(x+5\right)+9\)
\(=\left(x^2+5x\right)\left(x^2+5x+6\right)+9\)
Đặt \(x^2+5x+3=a\),ta có
\(\left(a-3\right)\left(a+3\right)+9\)
\(=a^2-9+9\)
\(=a^2\)
Vậy biểu thức đã cho là số chính phương
( x2 + 27 )( x + 9 ) - ( x + 3 )3
= x3 + 9x2 + 27x + 243 - ( x3 + 9x2 + 27x + 27 )
= x3 + 9x2 + 27x + 243 - x3 - 9x2 - 27x - 27 = 216
=> đpcm
Ta có:
\(\left(x^2+27\right)\left(x+9\right)-\left(x+3\right)^3\)
\(=x^3+9x^2+27x+243-\left(x+3\right)^3\)
\(=\left(x+3\right)^3+216-\left(x+3\right)^3\)
\(=216\)
Do giá trị của biểu thức là số nguyên(216) nên ko phụ thuộc vào biến
a)\(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x+1}.\frac{x+1}{x}\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x}\)
\(=\frac{x^2+4x+4}{x^2}\)
\(\left(\frac{x+2}{x}\right)^2\)
=>phép chia = 1 với mọi x # 0 và x#-1
b)Cm tương tự
a: Thay x=-4 vào B, ta được:
\(B=\dfrac{-4+3}{-4}=\dfrac{-1}{-4}=\dfrac{1}{4}\)
b: \(P=A\cdot B=\dfrac{x^2-3x+2x-9+3x+9}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}\)
\(=\dfrac{x^2+2x}{\left(x-3\right)}\cdot\dfrac{1}{x}=\dfrac{x+2}{x-3}\)
c: Để P nguyên thì \(x-3\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{4;2;8;-2\right\}\)
\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)
\(=10x-5x^2-\left(x^2+x+9x+9\right)\)
\(=10x-5x^2-x^2-x-9x-9\)
\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)
\(=-6x^2-9\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow-6x^2\le0\forall x\)
\(\Rightarrow-6x^2-9\le-9< 0\forall x\)
hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).
\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)
\(=3x^2+x^2-4xy-12x+4xy+12x+1\)
\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)
\(=4x^2+1\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1\ge1>0\forall x\)
hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).
#\(Toru\)
(x + 3)^3 - (x + 9)(x^2 +27 ) = x^3 + 3x^2.3 + 3x.9 + 27 - x^3 - 27x - 9x^2 - 243
= (x^3 - x^3) + (9x^2 - 9x^2) + (27x - 27x) +(27 - 243)
= 216
Ai thấy đúng thì tích cho milk vs nhá còn sai thì sửa jup nhá