Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta cần chứng minh
\(\left(a+b+c\right)^2\ge a^2+b^2+c^2+2\sqrt{3\left(a+b+c\right)abc}\)
\(\Leftrightarrow ab+bc+ca\ge\sqrt{3\left(a+b+c\right)abc}\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2-abc^2-bca^2-cab^2\ge0\)
\(\Leftrightarrow\left(ab-bc\right)^2+\left(bc-ca\right)^2+\left(ca-ab\right)^2\ge0\) (đúng)
\(a^3+b^3+c^3-3abc\)
\(=\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3a^2b-3ab^2-3abc\)
Biến đổi VT ta có :
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2+ac+bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(=\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\)
\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]=VP\) (đpcm)
Áp dụng bđt (x+y+z)^2 >= xy+yz+zx với x,y,z > 0 ta có:
(ab+bc+ca)^2 >= 3.(ab.bc+bc.ca+ca.ab) = 3abc.(a+b+c) = 3abc ( vì a+b+c = 1 )
=> a^2+b^2+c^2+2\(\sqrt{3abc}\)< = a^2+b^2+c^2+2\(\sqrt{\left(ab+bc+ca\right)^2}\)= a^2+b^2+c^2+2(ab+bc+ca) = (a+b+c)^2 = 1
Dấu "=" xảy ra <=> a=b=c=1/3
Vậy GTNN của a^2+b^2+c^2+2\(\sqrt{3abc}\)= 1 <=> a=b=c=1/3
Tk mk nha
Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn
bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x)
VT (ở đề bài) = a+b+c
<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0
từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r
b) \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (chuyển vế qua)
\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
Do VP >=0 với mọi a, b, c. Nên để đăng thức xảy ra thì a = b = c
`(a+b+c)^2=3(ab+bc+ca)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`
`<=>a^2+b^2+c^2=ab+bc+ca`
`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`VT>=0`
Dấu "=" xảy ra khi `a=b=c`
`a^3+b^3+c^3=3abc`
`<=>a^3+b^3+c^3-3abc=0`
`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`
`**a+b+c=0`
`**a^2+b^2+c^2=ab+bc+ca`
`<=>a=b=c`