Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=>\dfrac{2m}{10}+\dfrac{1}{10}=-\dfrac{1}{n}\)
\(=>\dfrac{2m+1}{10}=-\dfrac{1}{n}\)
\(=>n\left(2m+1\right)=\left(-10\right)\)
\(=>\left[{}\begin{matrix}n=1=>m=-\dfrac{11}{2}\left(loại\right)\\n=\left(-1\right)=>m=\dfrac{9}{2}\left(loại\right)\\n=10=>m=\left(-1\right)\left(tm\right)\\n=\left(-10\right)=>m=0\left(tm\right)\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}n=2=>m=-3\left(tm\right)\\n=-2=>m=2\left(tm\right)\\n=5=>m=-\dfrac{3}{2}\left(loại\right)\\n=\left(-5\right)=>m=\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)
\(=>\)Các cặp (m,n) thỏa mãn là: (-1,10)(0,-10)(-3,2)(2,-2)
\(\dfrac{m}{5}+\dfrac{1}{10}=\dfrac{-1}{n}\left(n\ne0\right)\)
\(\Rightarrow\dfrac{2mn}{10n}+\dfrac{n}{10n}=\dfrac{-10}{10n}\)
\(\Rightarrow2mn+n=-10\)
\(\Rightarrow n\left(2m+1\right)=-10\)
\(\Rightarrow n=\dfrac{-10}{2m+1}\)
-Vì m,n ∈ Z.
\(\Rightarrow-10⋮\left(2m+1\right)\)
\(\Rightarrow2m+1\inƯ\left(10\right)\)
\(\Rightarrow2m+1\in\left\{1;2;5;10;-1;-2;-5;-10\right\}\)
\(\Rightarrow m\in\left\{0;2;-1;-3\right\}\)
\(m=0\Rightarrow n=\dfrac{-10}{2.0+1}=-10\)
\(m=2\Rightarrow n=\dfrac{-10}{2.2+1}=-2\)
\(m=-1\Rightarrow n=\dfrac{-10}{2.\left(-1\right)+1}=10\)
\(m=-3\Rightarrow n=\dfrac{-10}{2.\left(-3\right)+1}=2\)
-Vậy các cặp số (m,n) là (0,-10) ; (2,-2) ; (-1,10) ; (-3,2).
2, ta thấy:
\(\dfrac{2008}{2009}< \dfrac{2008}{2009+2010}\left(1\right)\)
\(\dfrac{2009}{2010}< \dfrac{2009}{2009+20010}\left(2\right)\)
từ (1) và (2) cộng vế với vế ta đc :\(\dfrac{2008}{2009}+\dfrac{2009}{20010}< \dfrac{2008}{2009+2010}+\dfrac{2009}{2009+2010}=\dfrac{2008+2009}{2009+2010}\)
Theo đề bài ra ta có:
\(\dfrac{5}{x}-\dfrac{y}{3}=\dfrac{1}{6}\)
=> \(\dfrac{15}{3x}-\dfrac{xy}{3x}=\dfrac{1}{6}\)
=> \(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)
=>\(6\left(15-xy\right)=3x\)
=> \(90-6xy=3x\)
=> \(3x+6xy=90\)
=> \(3x\left(1+2y\right)=90\)
=> \(x\left(1+2y\right)=30\) (chia hai vế cho 3)
=> x và 1+2y là các ước của 30 . Ta có bảng sau:
x | 1 | -1 | 30 | -30 | 2 | -2 | 15 | -15 | 3 | -3 | 10 | -10 | 5 | -5 | 6 | -6 |
1+2y | 30 | -30 | 1 | -1 | 15 | -15 | 2 | -2 | 10 | -10 | 3 | -3 | 6 | -6 | 5 | -5 |
2y | 29 | -31 | 0 | -2 | 14 | -16 | 1 | -3 | 9 | -11 | 2 | -4 | 5 | -7 | 4 | -6 |
y | \(\dfrac{29}{2}\) | \(\dfrac{-31}{2}\) | 0 | -1 | 7 | -8 | \(\dfrac{1}{2}\) | \(\dfrac{-3}{2}\) | \(\dfrac{9}{2}\) | \(\dfrac{-11}{2}\) | 1 | -2 | \(\dfrac{5}{2}\) | \(\dfrac{-7}{2}\) | 2 | -3 |
Mà x ;y là các số nguyên => \(\left(x;y\right)\in\left\{\left(30;0\right),\left(-30;-1\right),\left(2;7\right),\left(-2;-8\right),\left(10;1\right),\left(-10;-2\right),\left(6;2\right),\left(-6;-3\right)\right\}\)
Bài 3 :
c) \(\dfrac{m}{5}-\dfrac{2}{n}=\dfrac{2}{5}\)
\(\Leftrightarrow\) \(\dfrac{m}{5}-\dfrac{2}{5}=\dfrac{2}{n}\)
\(\Leftrightarrow\) \(\dfrac{m-2}{5}=\dfrac{2}{n}\)
\(\Rightarrow\) ( m - 2 ) . n = 10
10 có các ước là : \(\pm1;\pm2;\pm5;\pm10\)
*\(\left\{{}\begin{matrix}m-2=1\\n=10\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=3\\n=10\end{matrix}\right.\)
*\(\left\{{}\begin{matrix}m-2=-1\\n=-10\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=1\\n=-10\end{matrix}\right.\)
*\(\left\{{}\begin{matrix}m-2=10\\n=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=12\\n=1\end{matrix}\right.\)
*\(\left\{{}\begin{matrix}m-2=-10\\n=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=-8\\n=-1\end{matrix}\right.\)
*\(\left\{{}\begin{matrix}m-2=2\\n=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=4\\n=5\end{matrix}\right.\)
*\(\left\{{}\begin{matrix}m-2=-2\\n=-5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=0\\n=-5\end{matrix}\right.\)
*\(\left\{{}\begin{matrix}m-2=5\\n=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=7\\n=2\end{matrix}\right.\)
*\(\left\{{}\begin{matrix}m-2=-5\\n=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=-3\\n=-2\end{matrix}\right.\)
Vậy có 8 cặp (m,n) thỏa mãn : (3,10) ; (1,-10) ; (12,1) ; (-8,-1) ; (4,5) ; (0,-5) ; (7,2) ; (-3,-2) .
Lời giải:
$\frac{1}{m}+\frac{n}{6}=12$
$\Rightarrow 6+mn=72m$
$\Leftrightarrow 6=m(72-n)$
Vì $m,72-n$ là số nguyên với mọi $m,n$ nguyên nên xét các TH:
$m=1; 72-n=6\Rightarrow (m,n)=(1,66)$
$m=6, 72-n=1\Rightarrow (m,n)=(6,71)$
$m=-1, 72-n=-6\Rightarrow (m,n)=(-1,78)$
$m=-6, 72-n=-1\Rightarrow (m,n)=(-6,73)$
$m=-2, 72-n=-3\Rightarrow (m,n)=(-2,75)$
$m=-3, 72-n=-2\Rightarrow (m,n)=(-3,74)$
$m=2, 72-n=3\Rightarrow (m,n)=(2,69)$
$m=3, 72-n=2\Rightarrow (m,n)=(3,70)$