\(n \neq 0\).

Chứng tỏ C=405n+2405

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

Với \(n\ne0\) thì \(405^n=\overline{.....5}\) chia \(10\) dư \(5\)

\(2^{405}=4^{202}.2=\overline{.....6}.2=\overline{.....2}\) chia \(10\) du \(2\)

\(\Rightarrow405^n+2^{405}\) chia \(10\) dư \(7\)

Xét \(m=10k+1\) thì \(m^2=100k^2+20k+1\) chia \(10\) dư \(1\)

\(\Rightarrow405^n+2^{405}+m^2\) chia \(10\) dư \(8\)

Xét \(m=10k+2\) thì  \(m^2=100k^2+40k+4\) chia \(10\) dư \(4\)

\(\Rightarrow405^n+2^{405}+m^2\)chia \(10\) dư \(1\)

Xét \(m=10k+3\) thì \(m^2=100k^2+60k+9\) chia \(10\) dư \(9\)

\(\Rightarrow405^n+2^{405}+m^2\) chia \(10\) dư \(6\)

Xét \(m=10k+4\) thì \(m^2=100k^2+80k+16\) chia \(10\) dư \(6\)

\(\Rightarrow405^n+2^{405}+m^2\) chia \(10\) dư \(3\)

................... 

Xét \(m=10k+9\) thì \(m^2=100k^2+180k+81\) chia \(10\) dư \(1\)

\(\Rightarrow405^n+2^{405}+m^2\) chia \(10\) dư \(8\)

Từ các điều trên \(\Rightarrow405^n+2^{405}+n^2\) luôn không chia hết cho \(10\)

17 tháng 7 2018

Ta có:

\(C={405}^n+{2^{405}}+{m}^2\)

   \(={(...5)}+{2}^{4.101+3}+{m}^2\)

   \(=(...5)+(...8)+{m}^2\)

    \(=(..3)+{m}^2\)

m là số nguyên => m^2 là số chính phương

=> m^2 ko tận cùng là 7

=> C ko tận cùng là 0

=> C ko chia hết cho 10

P/s: Tham khảo:Tính chất chữ số tận cùng của lũy thừa( ở câu tl của Đường Quỳnh Giang) ở link:

https://olm.vn/hoi-dap/question/1134742.html

5 tháng 11 2016

a.

Ta có: \(405^n=......5\)

\(2^{405}=2^{404}\cdot2=\left(.......6\right)\cdot2=.......2\)

\(m^2\) là số chính phương nên có chữ số tận cùng khác 3. Vậy A có chữ số tận cùng khác 0 \(\Rightarrow A⋮10\)

b.

\(B=\frac{2n+9}{n+2}+\frac{5}{n+2}\frac{n+17}{ }-\frac{3n}{n+2}=\frac{2n+9+5n+17-3n}{n+2}=\frac{4n+26}{n+2}\)

\(B=\frac{4n+26}{n+2}=\frac{4\left(n+2\right)+18}{n+2}=4+\frac{18}{n+2}\)

Để B là số tự nhiên thì \(\frac{18}{n+2}\) là số tự nhiên

\(\Rightarrow18⋮\left(n+2\right)\Rightarrow n+2\inư\left(18\right)=\left\{1;2;3;6;9;18\right\}\)

+ \(n+2=1\Leftrightarrow n=-1\) ( loại )

+ \(n+2=2\Leftrightarrow n=0\)

+ \(n+2=3\Leftrightarrow n=1\)

+ \(n+2=6\Leftrightarrow n=4\)

+ \(n+2=9\Leftrightarrow n=7\)

+ \(n+2=18\Leftrightarrow n=16\)

Vậy \(n\in\left\{0;1;4;7;16\right\}\) thì \(B\in N\)

c.

Ta có \(55=5\cdot11\)\(\left(5;1\right)=1\)

Do đó \(C=\overline{x1995y}⋮55\)\(\Leftrightarrow\)\(\begin{cases}C⋮5\\C⋮11\end{cases}\) \(\frac{\left(1\right)}{\left(2\right)}\)

\(\left(1\right)\Rightarrow y=0\) hoặc \(y=5\)

+ \(y=0\div\left(2\right)\Rightarrow x+9+5-\left(1+9+0\right)⋮11\Rightarrow x=7\)

+ \(y=5\div\left(2\right)\Rightarrow x+9+5-\left(1+9+5\right)⋮11\Rightarrow x=1\)

5 tháng 11 2016

Chết thiếu câu c nữa

23 tháng 4 2018

https://olm.vn/hoi-dap/question/102210.html

23 tháng 4 2018

m,n\(\in\)N*

C= 405n+2405+mko chia hết cho 10

ta có :405ncó tận cùng là 5

          2405=2404.2=22.202.2=4202.2

mà 4202có tận cùng là 6 

=> 4202.2 có chữ số tận cùng là 2

=>405n+2405có chữ số tận cùng là 7 

mà m2là số chính phương nên ko có tận cùng là 3

=>405n+2405+m2 ko có chữ số tận cùng là 0

=>C ko chia hết cho 10.

Đề: Chứng tỏ 4052+2405+m2 không chia hết cho 10

Giải

Ta có :dấu hiệu chia hết cho 10 là : chữ số tận cùng=0

Vậy ta phải tìm xem tổng trên có phải có chữ số tận cùng=0 hay không

Ta có 405n có tận cùng là 5(1 số có tận cùng =5 thì lũy thừa bao nhiêu cũng =5)

2405=(24)101.2=(...6)101.2=(...2)

m2là 1 số bình phương thì có tận cùng là 0;1;4;5;6;9

Vậy chữ số tận cùng của A=7;8;3;2;6

=)A không chia hết cho 10

 Chúc bạn học tốt 

25 tháng 10 2015

thêm đề vào

ta có 405^n luôn có c/số tận cùng bằng 5 (vì 405 tận cùng bằng c/số 5)  
-- với 2^405 ta để ý lũy thừa với cơ số là 2 có quy luât c/số tận cùng như sau:  
2^1=2 ; 2^2=4 ;2^3=8 ;2^4=16 ; 2^5=32 ......... rút ra quy luật là : c/số tận cùng lặp lại quy luật 1 nhóm
 gồm 4 c/số (2 ;4 ;6;8)  
ta có 405 :4 =100 (nhóm)dư 1 c/số 2 => c/số tận cùng của 2^405 là 2  
+ m^2 (với m Є N ),có c/số tận cùng là 1 trong các c/số sau: 0 ;1 ;4 ;5 ;6 ;9
 => 405^n + 2^405 + m^2 có c/số tận cùng là c/số tận cùng trong các kết quả sau :  
(5+2+0=7; 5+2+1=8 ;5+2+4=11 ;5+2+5=12; 5+2+6=13 ;5+2+9 =16)  
=>405^n + 2^405 + m^2 không chia hết cho 10 vì số chia hết cho 10 phải có c/số tận cùng =0
 vậy biểu thức A = 405^n + 2^405 + m^2 ( m,n Є N, n # 0) không chia hết cho 10 

26 tháng 3 2018

A=(...5)+(...2)+m^2

Để A chia hết cho 10 thì m^2 phải có tận cùng là 3.

mà số chính phương không có tận cùng là 3 nên A ko là số chính phương