\(x-y+5k=0;\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2016

bạn giải tin ra giao diem 2 dg thang 1,2 x=?;y=? (? là chỉ có k là ẩn) rồi thế vô 3 giai pt ra k

3 tháng 1 2016

Nguyễn Tuấn giải chi tiết cho mk đc ko vậy?

22 tháng 12 2015

x-y+5k=0 suy ra y=x+5k

(2k+3)x+k(y-1)=0 suy ra y=\(\frac{-\left(2k+3\right)x+k}{k}\)

(k+1)x-y+1=0 suy ra y=(k+1)x+1

3 đường thẳng đồng quy tại A(x;y0). 

suy ra: y= x0+5k = \(\frac{-\left(2k+3\right)x0+k}{k}\) = (k+1)x0+1

ta có x0+5k=(k+1)x0+1 suy ra x0=\(\frac{5k-1}{k}\) (1)

và x0+5k=\(\frac{-\left(2k+3\right)x0+k}{k}\) suy ra x0=\(\frac{k\left(1-5k\right)}{3\left(k+1\right)}\) (2)

Từ (1) và (2) suy ra \(\frac{5k-1}{k}\)=\(\frac{k\left(1-5k\right)}{3\left(k+1\right)}\) suy ra (5k-1)3(k+1)=k2(1-5k) tương đương 5k3+14k2+12k-3=0 tương đương k=0.2

thay vào 3 đường thẳng ban đầu. A(0;1)

 

2 tháng 12 2018

Cô hướng dẫn nhé! 

d1, d2, d3 đồng quy 

=> Giả sự M(x, y ) là điểm đồng quy 

tọa độ điểm M là giao điểm của d1, d2 

=> Tìm được điểm M

có được M(x, y) rồi em thay vào d3 để tìm k :)

3 tháng 12 2018

Kĩ hơn đi cô :(

bạn thử tải app này xem có đáp án không nhé <3 https://giaingay.com.vn/downapp.html

NV
21 tháng 6 2019

\(2x^2-mx-2m=0\)

a/ \(\Delta=m^2+16m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-16\end{matrix}\right.\)

b/ Gọi \(d_1:\) \(y=4x+b\)

\(A\left(a;a+7\right)\Rightarrow a+7=2a+4\Rightarrow a=3\Rightarrow A\left(3;10\right)\)

\(\Rightarrow10=4.3+b\Rightarrow b=-2\Rightarrow d_1:\) \(y=4x-2\)

\(\left\{{}\begin{matrix}y=mx+2m\\y=4x-2\end{matrix}\right.\)

- Nếu \(\Rightarrow\left(m-4\right)x+2m+2=0\Rightarrow x=\frac{-2m-2}{m-4}\Rightarrow y=\frac{-10m}{m-4}\)

Tự thay 2 giá trị m ở câu a vào để tính ra tọa độ cụ thể

c/ Với\(k\ne2l\ne4\Rightarrow\left\{{}\begin{matrix}k\ne4\\l\ne2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=kx+2k+1\\y=4x-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{-2k-3}{k-4}\\y=\frac{-10k-4}{k-4}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=2lx+l-2\\y=4x-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{-l}{2l-4}\\y=\frac{-4l+4}{l-2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{-2k-3}{k-4}=\frac{-l}{2l-4}\\\frac{-10k-4}{k-4}=\frac{-4l+4}{l-2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=...\\l=...\end{matrix}\right.\)

BĐT Vacs: Với a, b, c > 0 và abc = 1. Có:\(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}+\frac{1}{c^2+c+1}\ge1\)Đặt \(a\rightarrow a^k,b\rightarrow b^k,c\rightarrow c^k\) thì abc = 1. Có: \(\frac{1}{a^{2k}+a^k+1}+\frac{1}{b^{2k}+b^k+1}+\frac{1}{c^{2k}+c^k+1}\ge1\) (*)BĐT (*) sẽ giúp ta giải được khá nhiều bài toán với điều kiện abc = 1.Ví dụ 1: \(\frac{1}{\left(1+2a\right)^2}+\frac{1}{\left(1+2b\right)^2}+\frac{1}{\left(1+2c\right)^2}\ge\frac{1}{3}\) với abc...
Đọc tiếp

BĐT Vacs: Với a, b, c > 0 và abc = 1. Có:\(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}+\frac{1}{c^2+c+1}\ge1\)

Đặt \(a\rightarrow a^k,b\rightarrow b^k,c\rightarrow c^k\) thì abc = 1. Có: \(\frac{1}{a^{2k}+a^k+1}+\frac{1}{b^{2k}+b^k+1}+\frac{1}{c^{2k}+c^k+1}\ge1\) (*)

BĐT (*) sẽ giúp ta giải được khá nhiều bài toán với điều kiện abc = 1.

Ví dụ 1\(\frac{1}{\left(1+2a\right)^2}+\frac{1}{\left(1+2b\right)^2}+\frac{1}{\left(1+2c\right)^2}\ge\frac{1}{3}\) với abc =1,a>0,b>0,c>0

Phân tích: Ta chọn k: \(\frac{1}{\left(1+2a\right)^2}=\frac{1}{4a^2+4a+1}\ge\frac{1}{3\left(a^{2k}+a^k+1\right)}\)

\(\Leftrightarrow3a^{2k}+3a^k+2\ge4a^2+4a\)

Đạo hàm và cho a = 1 thì được \(k=\frac{4}{3}\)

Vậy ta chứng minh: \(\frac{1}{\left(1+2a\right)^2}\ge\frac{1}{3\left(a^{\frac{8}{3}}+a^{\frac{4}{3}}+1\right)}\) (1)

Đặt \(a\rightarrow x^3\) cần chứng minh: \(\frac{1}{\left(1+2x^3\right)^2}\ge\frac{1}{3\left(x^8+x^4+1\right)}\) (dễ dàng) 

Từ đó thiết lập 2 BĐT tương tự (1), cộng theo vế, dùng (*)  với k = 4/3 ta được đpcm. 

Lời giải xin để cho mọi người.

PS: Bài trên có một cách dùng UCT khá khó ở https://diendantoanhoc.net/topic/90839-phương-pháp-hệ-số-bất-định-uct/?p=394487

Ví dụ 2: Cho x,y,z > 0  và xyz =1 .Chứng minh: \(\frac{x^2}{\left(1+x\right)^2}+\frac{y^2}{\left(1+y\right)^2}+\frac{z^2}{\left(1+z\right)^2}\ge\frac{3}{4}\)

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow abc=1\)

Ta có: \(\frac{x^2}{\left(1+x\right)^2}=\frac{1}{\left(a+1\right)^2}\ge\frac{3}{4\left(a^2+a+1\right)}\)

 

4
16 tháng 5 2020

Bài toán hay dùng BĐT Vacs\(\sqrt{a^2-a+1\:}+\sqrt{b^2-b+1}+\sqrt{c^2-c+1}\ge a+b+c\)

Kết hợp giữa việc sử dụng phương pháp tiếp tuyến và tinh ý nhận ra bổ đề Vacs

Chú tth thử làm nhứ. Trong TKHĐ của t có sol rồi nha !!!!

17 tháng 5 2020

zZz Cool Kid_new zZz cách bác thì nhất rồi cách t thì chả khá gì a Thắng bên AoPS t nhớ có sol dùng Vacs lâu rồi mà

21 tháng 11 2017

câu này khá khó mình ko biết làm có đúng ko nữa

để \(\left(d1\right)\perp\left(d2\right)\)

\(\Leftrightarrow\)\(\left(k-3\right).\left(2k+1\right)=-1\)

\(\Leftrightarrow2k^2+k-6k-3+1=0\)

\(\Leftrightarrow2k^2-5k-2=0\)

\(\Leftrightarrow k^2-\frac{5}{2}k-1=0\)

\(\Leftrightarrow\)\(k^2-2.k.\frac{5}{4}+\frac{25}{16}-\frac{25}{16}-1=0\)

\(\Leftrightarrow\left(k-\frac{5}{4}\right)^2-\frac{41}{16}=0\)

\(\Leftrightarrow\left(k-\frac{5}{4}-\frac{\sqrt{41}}{4}\right)\left(k-\frac{5}{4}+\frac{\sqrt{41}}{4}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}k-\frac{5}{4}-\frac{\sqrt{41}}{4}=0\\k-\frac{5}{4}+\frac{\sqrt{41}}{4}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}k=\frac{5+\sqrt{41}}{4}\\k=\frac{5-\sqrt{41}}{4}\end{cases}}\)  ( Thỏa mãn \(k\ne3;k\ne\frac{-1}{2}\))

              vậy  \(k=\frac{5-\sqrt{41}}{4}\)  ;   \(k=\frac{5+\sqrt{41}}{4}\)

27 tháng 12 2017

cho 3 diem a ,b,c ,d trong do chi co 3 diem a,b,c thang hang. ke cac duong thang di qua 2 trong so 4 diem a,b,c,d . so duong thang phan biet thu duc la bao nhieu . tra loi di xem co duoc khong 

NV
4 tháng 6 2020

Gọi A là giao điểm d1 và d2

Pt hoành độ giao điểm d1 và d2: \(x+3=-x+1\Rightarrow x=-1\)

\(\Rightarrow A\left(-1;2\right)\)

Để 3 đường thẳng đồng quy \(\Leftrightarrow\) d3 qua A

\(\Leftrightarrow2=\sqrt{2}.\left(-1\right)+\sqrt{2}+m\)

\(\Rightarrow m=2\)

5 tháng 2 2020

https://loigiaihay.com/ly-thuyet-duong-thang-song-song-va-duong-thang-cat-nhau-c44a4461.html

3 tháng 2 2020

Cái này không biết nhưng có sẵn trên mạng, cứ coi rồi làm thử