\(\left(\sqrt{3}-1\right)x+m^{2^{ }}+m\)

y=<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 12 2017

Lời giải:

Gọi $I$ là giao điểm của hai đồ thị hàm số đã cho

Ta có:

\(\left\{\begin{matrix} y_I=(\sqrt{3}-1)x_I+m^2+m\\ y_I=(\sqrt{3}+1)x_I+3m+4\end{matrix}\right.\)

\(\Rightarrow (\sqrt{3}-1)x_I+m^2+m=(\sqrt{3}+1)x_I+3m+4\)

Mặt khác, để $I$ nằm trên trục tung thì \(x_I=0\)

\(\Rightarrow m^2+m=3m+4\)

\(\Leftrightarrow m^2-2m-4=0\)

\(\Leftrightarrow m=1\pm \sqrt{5}\)

3 tháng 12 2017

Còn tìm tọa độ nữa ạ

12 tháng 6 2020

2b

\(\left\{{}\begin{matrix}\sqrt{3}x-2\sqrt{2}y=7\\\sqrt{2}x+3\sqrt{3}y=-2\sqrt{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{6}x-4y=7\sqrt{2}\\\sqrt{6}x+9y=-6\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-13y=13\sqrt{2}\\\sqrt{3}x-2\sqrt{2}y=7\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=-\sqrt{2}\\x=\sqrt{3}\end{matrix}\right.\)

12 tháng 6 2020

2 a)

\(\left\{{}\begin{matrix}2x-y=3\\3x+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=10\\2x-7=3\end{matrix}\right.\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

a,ta có:(x2+7x+3)2=x4+14x3+55x2+42x+9(8x+4)(x2+5x+2)=8x3+44x2+36x+8=>x4+14x3+55x2+42x+9=8x3+44x2+36x+8<=>x4+6x3+11x2+6x+1=0xét x=0 ko phải no của ptxét x khác 0\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11=0\)\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9=0\Leftrightarrow\left(x+\frac{1}{x}+3\right)^2=0\Rightarrow x=\frac{-3+\sqrt{5}}{2};\frac{-3-\sqrt{5}}{2}\)d,xét n=1=> mệnh đề luôn đúnggiả sử mệnh đề...
Đọc tiếp

a,

ta có:

(x2+7x+3)2=x4+14x3+55x2+42x+9

(8x+4)(x2+5x+2)=8x3+44x2+36x+8

=>x4+14x3+55x2+42x+9=8x3+44x2+36x+8

<=>x4+6x3+11x2+6x+1=0

xét x=0 ko phải no của pt

xét x khác 0

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11=0\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9=0\Leftrightarrow\left(x+\frac{1}{x}+3\right)^2=0\Rightarrow x=\frac{-3+\sqrt{5}}{2};\frac{-3-\sqrt{5}}{2}\)

d,

xét n=1=> mệnh đề luôn đúng

giả sử mệnh đề đúng với n=k

ta sẽ cm nó đúng với n=k+1

với n=k+1

=>(n+1)(n+2)..(n+n)=2n(n+1)(n+2)...(2n-1)

=2(k+1)(k+2).....2k chia hết cho 2k+1

=>(n+1)(n+2)(n+3)...(n+n) chia hết cho 2n

c,

ta có:

\(\left(1+x\right)\left(1+\frac{y}{x}\right)=1+x+y+\frac{y}{x}\ge1+y+2\sqrt{y}=\left(\sqrt{y}+1\right)^2\)

\(\Rightarrow\left(1+x\right)\left(1+\frac{y}{x}\right)\left(1+\frac{9}{\sqrt{y}}\right)^2\ge\left[\left(\sqrt{y}+1\right)\left(1+\frac{9}{\sqrt{y}}\right)\right]^2\)

\(=\left(\sqrt{y}+\frac{9}{\sqrt{y}}+10\right)^2\ge\left(6+10\right)^2=256\left(Q.E.D\right)\)

dấu = xảy ra khi y=9;x=3

b,

x7+xy6=y14+y8

<=>(x7-y14)+(xy6-y8)=0

<=>(x-y2)(x+y2)+y6(x-y2)=0

<=>(x-y2)(x+y2+y6)=0

xét x=y2

\(\Rightarrow\sqrt{4x+5}+\sqrt{y^2+8}=\sqrt{4y^2+5}+\sqrt{y^2-1}\)

\(\Rightarrow\sqrt{4y^2+5}+\sqrt{y^2+8}=6\)

\(\Rightarrow\left(\sqrt{4y^2+5}-3\right)+\left(\sqrt{y^2+8}-3\right)=0\)

\(\Rightarrow\frac{4y^2-4}{\sqrt{4y^2+5}+3}+\frac{y^2-1}{\sqrt{y^2+8}+3}=0\)

\(\Rightarrow\left(y^2-1\right)\left(\frac{4}{\sqrt{4y^2+5}+3}+\frac{1}{\sqrt{y^2+8}+3}\right)=0\)

\(\frac{4}{\sqrt{4y^2+5}+3}+\frac{1}{\sqrt{y^2+8}+3}>0\Rightarrow y^2=1\Rightarrow\left(x;y\right)=\left(1;1\right);\left(1;-1\right)\)

xét x+y2+y6=0

<=>x=-y2-y6

lại có:

x7+xy6=y14+y8

<=>x(x6+y6)=y14+y8

<=>-(y2+y6)(x6+y6)=y14+y8

mà \(-\left(y^2+y^6\right)\left(x^6+y^6\right)\le0\le y^{14}+y^8\)

<=>y=0=>x=0(ko thỏa mãn)

vậy nghiệm của pt:(x;y)=(1;-1);(1;1)

1
14 tháng 10 2017

câu hệ sao từ x^7-y^14 sao xuống đc (x-y^2)(x+y^2) ? 

1 tháng 10 2019

Ta co:\(\Sigma\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}=\Sigma\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)Ta lai co:

\(\Sigma x+\Sigma\frac{1}{x}=\Sigma\left(x+\frac{1}{4x}\right)+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3+\frac{3}{4}.\frac{9}{x+y+z}\ge3+\frac{3}{4}.\frac{9}{\frac{3}{2}}=\frac{15}{2}\)

Dau '=' xay ra khi \(x=y=z=\frac{1}{2}\)

Vay \(P_{min}=\frac{15}{2}\)khi \(x=y=z=\frac{1}{2}\)

1 tháng 10 2019

mấy câu trên bn giải đc k ak ? Giải giúp mik vs :3

AH
Akai Haruma
Giáo viên
22 tháng 10 2020

Lời giải:

PT hoành độ giao điểm:

$(\sqrt{3}-1)x+m^2+m=(\sqrt{3}+1)x+3m+4$
$\Leftrightarrow 2x+2m+4-m^2=0$

Để 2 ĐTHS cắt nhau tại 1 điểm nằm trên trục tung thì PT hoành độ giao điểm trên phải nhận $x=0$ là nghiệm.

Điều này xảy ra khi $2m+4-m^2=0$

$\Leftrightarrow m=1\pm \sqrt{5}$

NV
27 tháng 10 2019

\(x=\sqrt{\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}}\)

\(=\sqrt{\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}\)

\(=\sqrt{\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\sqrt{\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)}\)

\(=\sqrt{2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)}=\sqrt{2}\)

2/ Để đồ thị hàm số cắt 2 trục tọa độ tại 2 điểm pb \(\Leftrightarrow\left\{{}\begin{matrix}m-1\ne0\\m\ne0\end{matrix}\right.\)

Gọi A là giao điểm của (d) với trục Ox \(\Rightarrow A\left(\frac{2m}{1-m};0\right)\)

\(\Rightarrow OA=\left|\frac{2m}{1-m}\right|=\left|\frac{2m}{m-1}\right|\)

Gọi B là giao điểm của (d) với Oy \(\Rightarrow B\left(0;2m\right)\Rightarrow OB=\left|2m\right|\)

\(S_{OAB}=\frac{1}{2}OA.OB=1\Leftrightarrow OA.OB=2\)

\(\Leftrightarrow\left|\frac{2m}{m-1}\right|.\left|2m\right|=2\Leftrightarrow2m^2=\left|m-1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2m^2=m-1\\2m^2=1-m\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2m^2-m+1=0\left(vn\right)\\2m^2+m-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-1\\m=\frac{1}{2}\end{matrix}\right.\)

NV
27 tháng 10 2019

3/

a/ ĐKXĐ: \(x\ge-3\)

\(\Leftrightarrow\left(x+3\right)\sqrt{x+3}+2\sqrt{x+3}=\left(x+1\right)\left[\left(x+1\right)^2+2\right]\)

\(\Leftrightarrow\left(x+3\right)\sqrt{x+3}+2\sqrt{x+3}=\left(x+1\right)^3+2\left(x+1\right)\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+3}=a\\x+1=b\end{matrix}\right.\)

\(\Rightarrow a^3+2a=b^3+2b\)

\(\Leftrightarrow a^3-b^3+2\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+2\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}+2\right)=0\)

\(\Leftrightarrow a=b\Leftrightarrow\sqrt{x+3}=x+1\) (\(x\ge-1\))

\(\Leftrightarrow x+3=\left(x+1\right)^2\)

\(\Leftrightarrow x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\left(l\right)\end{matrix}\right.\)

NV
30 tháng 5 2019

Câu 1: ĐKXĐ: \(y\ge2\)

\(\Leftrightarrow\left\{{}\begin{matrix}6\left|2x-y\right|+3\sqrt{y-2}=15\\6\left|2x-y\right|-2\sqrt{y-2}=8\end{matrix}\right.\)

Trừ trên cho dưới ta được:

\(5\sqrt{y-2}=7\Leftrightarrow\sqrt{y-2}=\frac{7}{5}\Leftrightarrow y-2=\frac{49}{25}\Rightarrow y=\frac{99}{25}\)

Thay vào pt đầu:

\(2\left|2x-\frac{99}{25}\right|+\frac{7}{5}=5\Leftrightarrow\left|2x-\frac{99}{25}\right|=\frac{9}{5}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{99}{5}=\frac{9}{5}\\2x-\frac{99}{5}=-\frac{9}{5}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{54}{5}\\x=9\end{matrix}\right.\)

Vậy hệ có 2 cặp nghiệm \(\left(x;y\right)=\left(\frac{54}{5};\frac{99}{5}\right);\left(9;\frac{99}{5}\right)\)

NV
30 tháng 5 2019

Câu 2:

Phương trình hoành độ giao điểm: \(x^2-\left(m-1\right)x-m^2-1=0\)

Ta có \(ac=-m^2-1< 0\) \(\forall m\Rightarrow\) pt luôn có 2 nghiệm trái dấu hay (d) luôn cắt (P) tại 2 điểm nằm về 2 phía trục tung

b/ Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-m^2-1\end{matrix}\right.\)

\(\left|x_1\right|+\left|x_2\right|=2\sqrt{2}\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=8\)

\(\Leftrightarrow\left(m-1\right)^2-2\left(-m^2-1\right)+2\left|-m^2-1\right|=8\)

\(\Leftrightarrow5m^2-2m-3=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-\frac{3}{5}\end{matrix}\right.\)