Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2b
\(\left\{{}\begin{matrix}\sqrt{3}x-2\sqrt{2}y=7\\\sqrt{2}x+3\sqrt{3}y=-2\sqrt{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{6}x-4y=7\sqrt{2}\\\sqrt{6}x+9y=-6\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-13y=13\sqrt{2}\\\sqrt{3}x-2\sqrt{2}y=7\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=-\sqrt{2}\\x=\sqrt{3}\end{matrix}\right.\)
2 a)
\(\left\{{}\begin{matrix}2x-y=3\\3x+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=10\\2x-7=3\end{matrix}\right.\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Ta co:\(\Sigma\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}=\Sigma\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)Ta lai co:
\(\Sigma x+\Sigma\frac{1}{x}=\Sigma\left(x+\frac{1}{4x}\right)+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3+\frac{3}{4}.\frac{9}{x+y+z}\ge3+\frac{3}{4}.\frac{9}{\frac{3}{2}}=\frac{15}{2}\)
Dau '=' xay ra khi \(x=y=z=\frac{1}{2}\)
Vay \(P_{min}=\frac{15}{2}\)khi \(x=y=z=\frac{1}{2}\)
Lời giải:
PT hoành độ giao điểm:
$(\sqrt{3}-1)x+m^2+m=(\sqrt{3}+1)x+3m+4$
$\Leftrightarrow 2x+2m+4-m^2=0$
Để 2 ĐTHS cắt nhau tại 1 điểm nằm trên trục tung thì PT hoành độ giao điểm trên phải nhận $x=0$ là nghiệm.
Điều này xảy ra khi $2m+4-m^2=0$
$\Leftrightarrow m=1\pm \sqrt{5}$
\(x=\sqrt{\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}}\)
\(=\sqrt{\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}\)
\(=\sqrt{\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\sqrt{\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)}\)
\(=\sqrt{2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)}=\sqrt{2}\)
2/ Để đồ thị hàm số cắt 2 trục tọa độ tại 2 điểm pb \(\Leftrightarrow\left\{{}\begin{matrix}m-1\ne0\\m\ne0\end{matrix}\right.\)
Gọi A là giao điểm của (d) với trục Ox \(\Rightarrow A\left(\frac{2m}{1-m};0\right)\)
\(\Rightarrow OA=\left|\frac{2m}{1-m}\right|=\left|\frac{2m}{m-1}\right|\)
Gọi B là giao điểm của (d) với Oy \(\Rightarrow B\left(0;2m\right)\Rightarrow OB=\left|2m\right|\)
\(S_{OAB}=\frac{1}{2}OA.OB=1\Leftrightarrow OA.OB=2\)
\(\Leftrightarrow\left|\frac{2m}{m-1}\right|.\left|2m\right|=2\Leftrightarrow2m^2=\left|m-1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2m^2=m-1\\2m^2=1-m\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2m^2-m+1=0\left(vn\right)\\2m^2+m-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-1\\m=\frac{1}{2}\end{matrix}\right.\)
3/
a/ ĐKXĐ: \(x\ge-3\)
\(\Leftrightarrow\left(x+3\right)\sqrt{x+3}+2\sqrt{x+3}=\left(x+1\right)\left[\left(x+1\right)^2+2\right]\)
\(\Leftrightarrow\left(x+3\right)\sqrt{x+3}+2\sqrt{x+3}=\left(x+1\right)^3+2\left(x+1\right)\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+3}=a\\x+1=b\end{matrix}\right.\)
\(\Rightarrow a^3+2a=b^3+2b\)
\(\Leftrightarrow a^3-b^3+2\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+2\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}+2\right)=0\)
\(\Leftrightarrow a=b\Leftrightarrow\sqrt{x+3}=x+1\) (\(x\ge-1\))
\(\Leftrightarrow x+3=\left(x+1\right)^2\)
\(\Leftrightarrow x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\left(l\right)\end{matrix}\right.\)
Câu 1: ĐKXĐ: \(y\ge2\)
\(\Leftrightarrow\left\{{}\begin{matrix}6\left|2x-y\right|+3\sqrt{y-2}=15\\6\left|2x-y\right|-2\sqrt{y-2}=8\end{matrix}\right.\)
Trừ trên cho dưới ta được:
\(5\sqrt{y-2}=7\Leftrightarrow\sqrt{y-2}=\frac{7}{5}\Leftrightarrow y-2=\frac{49}{25}\Rightarrow y=\frac{99}{25}\)
Thay vào pt đầu:
\(2\left|2x-\frac{99}{25}\right|+\frac{7}{5}=5\Leftrightarrow\left|2x-\frac{99}{25}\right|=\frac{9}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{99}{5}=\frac{9}{5}\\2x-\frac{99}{5}=-\frac{9}{5}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{54}{5}\\x=9\end{matrix}\right.\)
Vậy hệ có 2 cặp nghiệm \(\left(x;y\right)=\left(\frac{54}{5};\frac{99}{5}\right);\left(9;\frac{99}{5}\right)\)
Câu 2:
Phương trình hoành độ giao điểm: \(x^2-\left(m-1\right)x-m^2-1=0\)
Ta có \(ac=-m^2-1< 0\) \(\forall m\Rightarrow\) pt luôn có 2 nghiệm trái dấu hay (d) luôn cắt (P) tại 2 điểm nằm về 2 phía trục tung
b/ Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-m^2-1\end{matrix}\right.\)
\(\left|x_1\right|+\left|x_2\right|=2\sqrt{2}\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=8\)
\(\Leftrightarrow\left(m-1\right)^2-2\left(-m^2-1\right)+2\left|-m^2-1\right|=8\)
\(\Leftrightarrow5m^2-2m-3=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-\frac{3}{5}\end{matrix}\right.\)
Lời giải:
Gọi $I$ là giao điểm của hai đồ thị hàm số đã cho
Ta có:
\(\left\{\begin{matrix} y_I=(\sqrt{3}-1)x_I+m^2+m\\ y_I=(\sqrt{3}+1)x_I+3m+4\end{matrix}\right.\)
\(\Rightarrow (\sqrt{3}-1)x_I+m^2+m=(\sqrt{3}+1)x_I+3m+4\)
Mặt khác, để $I$ nằm trên trục tung thì \(x_I=0\)
\(\Rightarrow m^2+m=3m+4\)
\(\Leftrightarrow m^2-2m-4=0\)
\(\Leftrightarrow m=1\pm \sqrt{5}\)
Còn tìm tọa độ nữa ạ