Với góc nhọn  
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\left(sin^2a+cos^2a\right)^2-2\cdot sin^2a\cdot cos^2a+2\cdot\dfrac{sin^2a}{cos^2a}\cdot cos^4a\)

\(=1-2\cdot sin^2a\cdot cos^2a+2\cdot sin^2a\cdot cos^2a\)

=1

\(A=\left(\sin\alpha+\cos\alpha+\sin\alpha-\cos\alpha\right)^2-2\left(\sin\alpha+\cos\alpha\right)\left(\sin\alpha-\cos\alpha\right)\)

\(=4\sin^2\alpha-2\sin^2\alpha+2\cos^2\alpha=2\left(\sin^2\alpha+\cos^2\alpha\right)=2\)

\(B=\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)=\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\)

\(=\left(\sin^2\alpha+\cos^2\alpha\right)^2-1=0\)

\(C=3\left(\sin^4\alpha+\cos^4\alpha\right)-2\sin^2\alpha.\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)=3\left(\sin^4\alpha+\cos^4\alpha\right)-2\sin^2\alpha.\cos^2\alpha\)

\(=3\left(\sin^2\alpha+\cos^2\alpha-\frac{1}{9}\right)^2-\frac{1}{9}=\frac{61}{27}\)

11 tháng 9 2015

A = \(\left(sin^2a+cos^2a\right)^2=1^2=1\)

D = \(sin^2\left(sin^2B+cos^2B\right)+cos^2a=sin^2a+cos^2a=1\)

12 tháng 9 2015

Bài 1 :

\(C=cos^2a\left(cos^2a+sin^2a\right)+sin^2a=cos^2a+sin^2a=1\)

 

 

11 tháng 9 2015

D = \(\left(sin^2a+cos^2a\right)+\left(cos\left(90-a\right)-sina\right)+1+\left(tan^2\left(90-a\right)-\frac{1}{sin^2a}\right)\)

  \(=1+\left(sina-sina\right)+1+\left(cot^2a-1-cos^2a\right)=1+1-1=1\)

20 tháng 7 2016

\(1+\sin^2\alpha+\cos^2\alpha=1+1=2\)

19 tháng 8 2016

1-sin2α=cos2α

 

31 tháng 10 2017

A = sin6α+ 3sin2α .cos2α   +  cos6α

    =  sin6α + 3sin2α .cos2α ( sin2α  + cos2α )   +  cos6α

    =  sin6α + 3sin4 α .cos2α  + 3sin4α .cos4α    +  cos6α

    =  (sin2α  + cos2α )2

    = 1

b: Xét ΔADC vuông tại D và ΔBEC vuông tại E có 

\(\widehat{C}\) chung

Do đó: ΔADC\(\sim\)ΔBEC

16 tháng 10 2015

\(A=\left(sin^2a+cos^2a\right)\left(sin^4a-sin^2acos^2a+cos^4a\right)+3sin^2acos^2a\)

A = \(sin^4+2sin^2acos^2a+cos^4a=\left(sin^2a+cos^2a\right)^2=1\)

28 tháng 11 2017

\(\sin\alpha=\frac{2}{3}\) nên a là góc nhọn trong tam giác vuông có cạnh đối là 2, cạnh huyền là 3 suy ra cạnh kề = \(\sqrt{5}\)

Vậy: \(\cos\alpha=\sqrt{\frac{5}{3}};\tan\alpha=\frac{2}{\sqrt{5}};\cot\alpha=\sqrt{\frac{5}{2}}\)

28 tháng 11 2017

lỡ 1 cạnh = 4 1 cạnh là 6 sao bn