Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT: \(a^2+b^2\ge2ab\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
\(f\left(x\right)=x^4+\left(1-x\right)^4\ge\frac{\left[x^2+\left(1-x\right)^2\right]^2}{2}\ge\frac{\left[\frac{\left(x+1-x\right)^2}{2}\right]^2}{2}=\frac{1}{8}\)
Dấu "=" xảy ra \(\Leftrightarrow x=1-x\Leftrightarrow x=\frac{1}{2}\)
Vậy tập giá trị của f(x) là: [1/8;+\(\infty\))
Đường thẳng a: 3x - 4y - 31 = 0
Gọi I ( x; y ) là tâm của đương tròn cần tìm
Ta có: d( I; a ) = IA = 5 =>\(\frac{\left|3x-4y-31\right|}{\sqrt{3^2+4^2}}=5\) <=> \(\left|3x-4y-31\right|=25\)<=> 3x - 4y - 31 = 25 ( 1) hoặc 3x - 4y - 31 = -25 ( 2)
a có VTPT \(\overrightarrow{n}\) = ( 3; -4) => a có VTCP \(\overrightarrow{u}\) = ( 4; 3 )
Lại có: IA vuông góc với a => ( 1- x ) . 4 + 3 ( - 7 - y ) = 0 <=> - 4x -3 y = 17 (3)
Từ (1) ; (3) => \(I_1\left(4;-11\right)\)
Từ (2) ; (3) => \(I_2\left(-2;-3\right)\)
Đáp án A
\(\left(x+5\right)\sqrt{2x^2+1}=x^2+x-5\left(đk:x\ge0\right)\)
\(< =>x\sqrt{2x^2+1}-0+5\sqrt{2x^2+1}-5=x\left(x+1\right)\)
\(< =>\frac{x^2\left(2x^2+1\right)}{x\sqrt{2x^2+1}}+\frac{25\left(2x^2+1\right)-25}{5\sqrt{2x^2+1}+5}=x\left(x+1\right)\)
\(< =>\frac{x\left(2x^2+1\right)}{\sqrt{2x^2+1}}+\frac{25.2x^2}{5\left(\sqrt{2x^2+1}+1\right)}-x\left(x+1\right)=0\)
\(< =>x\left[\frac{2x^2+1}{\sqrt{2x^2+1}}+\frac{10x}{\sqrt{2x^2+1}+1}-x-1\right]=0< =>x=0\)
đánh giá cái ngoặc to to bằng đk là được , hoặc có nghiệm nữa thì giải luôn
A