Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(K=\frac{2\sqrt{x}+3}{\sqrt{x}-5}=\frac{2\sqrt{x}-10}{\sqrt{x}-5}+\frac{13}{\sqrt{x}-5}=2+\frac{13}{\sqrt{x}-5}\)là số nguyên dương
<=> 13 chia hết cho \(\sqrt{x}-5\)
<=> \(\sqrt{x}-5\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\)
<=> \(\sqrt{x}\in\left\{-12;4;6;18\right\}\)
<=> \(x\in\left\{16;36;324\right\}\) (vì \(\sqrt{x}\ge0\))
Do x nguyên và x có GTLN nên x = 324
Chọn đáp án B
Vậy có 5 giá trị nguyên của m thỏa mãn điều kiện.
Q=20-/3-x/ lớn nhất khi /3-x/ nhỏ nhất
nên /3-x/=0(vì /3-x/ luôn >=0 dấu)
3-x=0
x=3
D=4/\x-2\+2 lớn nhất khi và chỉ khi \x-2\+2 nhỏ nhất,khác 0 và lớn hơn=2(vì \x-2\ luôn EN)
nên \x-2\+2=2
\x-2\=0
x-2=0
x=2
Chọn B.
Phương pháp:
Biến đổi đẳng thức đã cho để đưa về dạng phương trình đường tròn (C) tâm I bán kính R.
Từ đó ta đưa bài toán về dạng bài tìm M x ; y ∈ C để O M - a lớn nhất hoặc nhỏ nhất.
Xét các trường hợp xảy ra để tìm a.
Cách giải:
Đáp án B
Gọi K là trung điểm của AB, do ∆CAB và ∆DAB là hai tam giác cân chung cạnh đáy AB nên C K ⊥ A B D K ⊥ A B ⇒ A B ⊥ C D K
Kẻ D H ⊥ C K ta có D H ⊥ A B C
Vậy V = 1 3 S . h = 1 3 1 2 C K . A B . D H = 1 3 1 2 C K . D H . A B
Suy ra V = 1 3 A B . S Δ K D C
Dễ thấy Δ C A B = Δ D A B ⇒ C K = D K h a y Δ K D C cân tại K. Gọi I là trung điểm CD, suy ra K I ⊥ C D và K I = K C 2 − C I 2 = A C 2 − A K 2 − C I 2 = 4 − x 2 4 − 1 = 1 2 12 − x 2
Suy ra S Δ K D C = 1 2 K I . C D = 1 2 12 − x 2
Vậy V = 1 6 x 12 − x 2 ≤ 1 6 . x 2 + 12 − x 2 2 = 1 . Dấu đẳng thức xảy ra khi và chỉ khi x = 12 − x 2 h a y x = 6
Đáp án A
Đặt t = log 1 3 a với a ∈ 1 9 ; 3 ⇒ t ∈ - 1 ; 2 .
Khi đó P = 9 log 1 3 3 a 3 - log 1 3 a 3 + 1 = 1 3 log 1 3 a 3 - 3 log 1 3 a + 1 ⇒ P = f ( t ) = t 3 3 - 3 t + 1
Xét hàm số f t = t 3 3 - 3 t + 1 trên đoạn [-1;2] ta có:
f ' t = t 2 - 3 ; f ' t = 0 ⇔ t 2 = 3 - 1 ≤ t ≤ 2 ⇔ t = 3
Tính các giá trị f - 1 = 11 3 ; f 2 = - 7 3 ; f 3 = 1 - 2 3
Vậy giá trị lớn nhất của f(t) là f - 1 = 11 3 và giá trị nhỏ nhất của f(t) là f 3 = 1 - 2 3
Do đó 3 M + 5 m = 3 . 11 3 + 5 1 - 2 3 = 16 - 10 3 = - 1 , 32
Chọn C.
Tập xác định của hàm số
Cách 1: Bấm máy tính. Với máy 580vn chọn start:-2, end: 2, step: 2/9 có:
thử thấy phương án C gần nhất với kết quả này nên ta chọn C.
\(A=\frac{12-x}{4-x}=1+\frac{8}{4-x}\)
A nhận giá trị nguyên khi 4 - x là ước nguyên của 8. Mà để A lớn nhất thì 4 - x phải là ước nguyên dương bé nhất hay x - 4 = 1
<=> x = 5
Vậy GTNN của A là 1 + 8 = 9
bạn nhầm đề chỗ 14-x chứ không phải là 12-x