K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2021

a) Để \(\sqrt{\dfrac{x}{3}}\) có nghĩa thì \(\dfrac{x}{3}\ge0\Leftrightarrow x\ge0\)

b) Để \(\sqrt{-5x}\) có nghĩa thì \(-5x\ge0\Leftrightarrow x\le0\)

c) Để \(\sqrt{4-x}\) có nghĩa thì \(4-x\ge0\Leftrightarrow x\le4\)

d) Để \(\sqrt{3x+7}\) có nghĩa thì \(3x+7\ge0\Leftrightarrow x\ge-\dfrac{7}{3}\)

e) Để \(\sqrt{-3x+4}\) có nghĩa thì \(-3x+4\ge0\Leftrightarrow x\le\dfrac{4}{3}\)

f) Để \(\sqrt{\dfrac{1}{-1+x}}\) có nghĩa thì \(\left\{{}\begin{matrix}\dfrac{1}{-1+x}\ge0\\-1+x\ne0\end{matrix}\right.\)

\(\Leftrightarrow-1+x>0\Leftrightarrow x>1\)

g) Để \(\sqrt{1+x^2}\) có nghĩa thì \(1+x^2\ge0\left(đúng\forall x\right)\)

h) \(\sqrt{\dfrac{5}{x-2}}\) có nghĩ thì \(\left\{{}\begin{matrix}\dfrac{5}{x-2}\ge0\\x-2\ne0\end{matrix}\right.\)

\(\Leftrightarrow x-2>0\Leftrightarrow x>2\)

15 tháng 9 2021

a. \(x\ge0\)

b. \(x< 0\)

c. \(x\le4\)

d. \(x\ge\dfrac{-7}{3}\)

e. \(x\le\dfrac{4}{3}\)

f. \(x>1\)

g. Mọi x

h. \(x>2\)

3 tháng 6 2018

a) Vì biểu thức \(\sqrt{\dfrac{-5}{x^2+6}}\)có -5<0 nên làm cho cả phân số âm

Từ đó suy ra căn thức vô nghiệm

Vậy không có giá trị nào của x để biểu thức trên xác định

b) \(\sqrt{\left(x-1\right)\left(x-3\right)}\)

Để biểu thức trên xác định thì chia ra 4 TH (vì để xác định thì cả x-1 và x-3 cùng dương hoặc cùng âm)

\(\left[\begin {array} {} \begin{cases} x-1\geq0\\ x-3\geq0 \end{cases} \Leftrightarrow \begin{cases} x\geq1\\ x\geq3 \end{cases} \Rightarrow x\geq3 \\ \begin{cases} x-1\leq0\\ x-3\leq0 \end{cases} \Leftrightarrow \begin{cases} x\leq1\\ x\leq3 \end{cases} \Rightarrow x\leq1 \end{array} \right.\)

c) \(\sqrt{x^2-4}\) \(\Leftrightarrow\)\(\sqrt{\left(x-2\right)\left(x+2\right)}\)

Rồi làm như câu b

d) \(\sqrt{\dfrac{2-x}{x+3}}\)

Để biểu thức trên xác định thì

\(\begin{cases}2-x\ge0\\x+3>0\end{cases}\Leftrightarrow\begin{cases}x\ge2\\x>-3\end{cases}\) \(\Rightarrow\) \(x\ge2\) hoặc \(x>-3\)

e) Ở các biểu thức sau này nếu chỉ có căn thức có ẩn và + (hoặc trừ) với 1 số thì chỉ cần biến đổi cái có ẩn còn cái số thì kệ xác nó đi haha )

\(\sqrt{x^2-3x}\Leftrightarrow\sqrt{x\left(x-3\right)}\)

Để biểu thức trên xác định thì \(x\ge0\)\(x-3\ge0\Leftrightarrow x\ge3\)

Bữa sau mình làm tiếp

27 tháng 5 2018

1)

a) \(6=\sqrt{36}< \sqrt{40}\)

b) \(3=\sqrt{9}< \sqrt{10}\)

c) \(2\sqrt{3}< 2\sqrt{4}=4\)

d) \(3\sqrt{2}=\sqrt{18}< \sqrt{36}=6\)

e) \(7=\sqrt{49}< \sqrt{50}\)

2)

a) \(x\ge0\)

b) \(-2x+1\ge0\Leftrightarrow-2x\ge-1\Leftrightarrow x\le\dfrac{1}{2}\)

c) \(5-a\ge0\Leftrightarrow a\le5\)

d) \(2x-3>0\Leftrightarrow2x>3\Leftrightarrow x>\dfrac{3}{2}\)

e) \(-3< x< 1\)

f) \(-3x\ge-4\Leftrightarrow x\le\dfrac{4}{3}\)

g) \(x^2-2x-3\ge0\Leftrightarrow\left(x+1\right)\left(x-3\right)\ge0\Leftrightarrow-1\le x\le3\)

27 tháng 7 2017

a) Để \(\sqrt{3x-5}\) có nghĩa thì

3x - 5 \(\ge\) 0 <=> 3x \(\ge\) 5 <=> x \(\ge\) \(\dfrac{5}{3}\)

b) Để \(\sqrt{\dfrac{-3}{4-5x}}\) có nghĩa thì

\(\dfrac{-3}{4-5x}\ge0\)

Do -3 < 0 nên \(\dfrac{-3}{4-5x}< 0\)

Khi và chỉ khi 4 - 5x < 0 <=> x > \(\dfrac{4}{5}\)

c) Để \(\sqrt{x^2-5x+4}\) = \(\sqrt{\left(x^2-x\right)-\left(4x-4\right)}=\sqrt{x\left(x-1\right)-4\left(x-1\right)}=\sqrt{\left(x-1\right)\left(x-4\right)}\) có nghĩa thì

\(\left(x-1\right)\left(x-4\right)\ge0\)

Ta có bảng xét dấu :

x (x-1) (x-4) (x-1)(x-4) 1 4 0 0 0 0 - + + - - + + - +

=> x \(\le1\) Hoặc x \(\ge4\)

e) Để \(\sqrt{2x-3}\) có nghĩa thì \(2x-3\ge0< =>2x\ge3\Leftrightarrow x\ge\dfrac{3}{2}\)

NV
1 tháng 3 2019

a/ \(x^2+4x-5>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -5\end{matrix}\right.\)

b/ \(\left\{{}\begin{matrix}2x-1\ge0\\x-\sqrt{2x-1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\\left\{{}\begin{matrix}x>0\\x^2>2x-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\end{matrix}\right.\)

c/ \(\left\{{}\begin{matrix}x^2-3\ge0\\1-\sqrt{x^2-3}\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{matrix}\right.\\x\ne\pm2\end{matrix}\right.\)

d/ \(\left\{{}\begin{matrix}x+\dfrac{1}{x}\ge0\\-2x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>0\\x\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn

e/ \(\left\{{}\begin{matrix}3x-1\ge0\\5x-3\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\ge\dfrac{3}{5}\end{matrix}\right.\) \(\Rightarrow x\ge\dfrac{3}{5}\)

AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Lời giải:

a) ĐK: \(\left\{\begin{matrix} x-2\neq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow x-2>0\Leftrightarrow x>2\)

b) ĐK: \(\left\{\begin{matrix} x+2\neq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow x\geq 2\)

c) ĐK: \(\left\{\begin{matrix} x^2-4\neq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x-2)(x+2)\neq 0\\ x\geq 2\end{matrix}\right.\Leftrightarrow x>2\)

d) ĐK: \(3-2x>0\Leftrightarrow x< \frac{3}{2}\)

e) ĐK: \(2x+3>0\Leftrightarrow x> \frac{-3}{2}\)

f) ĐK: \(x+1< 0\Leftrightarrow x< -1\)

27 tháng 8 2017

a)\(\sqrt{-5x}\)có nghĩa khi -5x>=0 hay x<=0

b)\(\sqrt{4-x}\) có nghĩa khi 4-x>=0 hay x<=4

c)\(\sqrt{3x+7}\) có nghĩa khi 3x+7.=0 hay x>=-7/3

d)\(\dfrac{2}{x^2}\) có nghĩa khi 2/x^2>=0hay x>=\(\sqrt{2}\)

1 tháng 8 2018

\(a,\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{x+3\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(\Rightarrow\sqrt{x}+3\)

\(b,\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{4y+7\sqrt{y}-4\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\sqrt{y}.\left(4\sqrt{y}\right)-\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\left(4\sqrt{y}+7\right).\left(\sqrt{y}-1\right)}{4\sqrt{y}+7}\)

\(\Rightarrow\sqrt{y}-1\)

\(c,\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)

\(\Leftrightarrow\dfrac{\sqrt{xy}.\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)

\(\Rightarrow\sqrt{xy}\)

1 tháng 8 2018

\(d,\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{x+\sqrt{x}-4\sqrt{x}-4}{x+3\sqrt{x}-4\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)-4\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(x+3\right)-4\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-4\right)}\)

\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)

\(\Rightarrow\dfrac{x-2\sqrt{x}-3}{x-9}\)

\(e,\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{4}}\)

\(\Leftrightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+2}\)

\(\Rightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{3}\)

11 tháng 12 2018

a,\(\sqrt{3x+1}=3x-1\) Đk:\(x\ge\dfrac{-1}{3}\)

\(< =>3x+1=9x^2-6x+1\)

\(< =>9x-9x^2=0\)

\(< =>9x\left(1-x\right)=0\)

\(< =>x=0\) hoặc \(x=1\)
b,\(2+\sqrt{3x-5}=x+1\) Đk:\(x\ge\dfrac{5}{3}\)

\(< =>\sqrt{3x-5}=x-1\)

\(< =>3x-5=x^2-2x+1\)

\(< =>x^2+x+6=0\)(vô lý vì \(x^2\ge\dfrac{25}{9},x\ge\dfrac{5}{3}\))

=>\(x\in\varnothing\)

c,Đk : \(x\ge\dfrac{-7}{5}\)

\(\)\(\dfrac{5x+7}{x+3}=16\)

\(< =>5x+7=16x+48\)

\(< =>-11x=41 \)

\(< =>x=\dfrac{-41}{11}\)(ko tm đk)

\(=>x\in\varnothing\)

d,tương tự câu c bình phương 2 vế cũng ra \(x\in\varnothing\)

4 tháng 9 2017

a) Để \(\sqrt{3x-7}\) có nghĩa \(\Leftrightarrow\) 3x - 7 \(\ge0\)

\(\Leftrightarrow x\ge\dfrac{7}{3}\)

b) Để \(\sqrt{2-5x}\) xđ <=> 5x \(\le2\)

<=> x \(\le\dfrac{2}{5}\)

c) Để \(\sqrt{\dfrac{-3}{x-5}}xđ\Leftrightarrow x-5< 0\)

<=> x < 5

d) Để \(\sqrt{5x^2-x-4}\) xđ <=> 5x2 - x - 4 \(\ge0\)

<=> \(\left(5x+4\right)\left(x-1\right)\ge0\)

Xét bảng:

x -4 1
5x + 4 - 0 + +
x - 1 - - 0 +
(5x+4)(x-1) + 0 - 0 +

Vây ĐKXĐ: -4 \(\le x\le1\)

(bảng xét dấu bị lệch...@@)

e) Để \(\sqrt{9-x^2}\) xđ <=> \(9-x^2\ge0\)

<=> x \(\le\pm3\)

f) Để \(\sqrt{x^2-1}xđ\) <=> x2 - 1 \(\ge0\)

<=> x \(\ge\pm1\)