Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) ĐK: \(\left\{\begin{matrix} x-2\neq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow x-2>0\Leftrightarrow x>2\)
b) ĐK: \(\left\{\begin{matrix} x+2\neq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow x\geq 2\)
c) ĐK: \(\left\{\begin{matrix} x^2-4\neq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x-2)(x+2)\neq 0\\ x\geq 2\end{matrix}\right.\Leftrightarrow x>2\)
d) ĐK: \(3-2x>0\Leftrightarrow x< \frac{3}{2}\)
e) ĐK: \(2x+3>0\Leftrightarrow x> \frac{-3}{2}\)
f) ĐK: \(x+1< 0\Leftrightarrow x< -1\)
Căn thức có nghĩa \(\Leftrightarrow x^2-3\ge0\Rightarrow\sqrt{3}\le x\le-\sqrt{3}\)
\(\Leftrightarrow x^2-2x-3\ge0\)
\(\Leftrightarrow x\left(x+2\right)\ge0\)
\(\Leftrightarrow x^2+5x+6\ge0\)
Bạn tìm điều kiện để cái trong căn lớn hơn bằng 0 la ok luôn mà
a, x-2 khác 0 suy ra x khác 2
x-2 lớn hơn hoặc bằng 0 suy ra x lớn hơn hoặc bằng2
Nên x lớn hơn 2
b, x+2 \(\ne\)0 \(\Rightarrow\)x\(\ne\)-2
x-2 \(\ge\)0 \(\Rightarrow\)x \(\ge\)2
Vậy x\(\ge\)2
\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}\) luôn xđ với mọi x
các câu còn lại tương tự
Để \(\frac{x}{x-2}+\sqrt{x-2}\) có nghĩa thì điều kiện là:
\(\hept{\begin{cases}x-2\ne0\\x-2\ge0\end{cases}\Leftrightarrow}x-2>0\Leftrightarrow x>2\)
Để \(\frac{x}{x+2}+\sqrt{x-2}\) có nghĩa thì điều kiện là:
\(\hept{\begin{cases}x+2\ne0\\x-2\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne-2\\x\ge2\end{cases}\Leftrightarrow}x\ge2\)
Để \(\frac{x}{x^2-4}+\sqrt{x-2}\) có nghĩa thì điều kiện là:
\(\hept{\begin{cases}x-2\ge0\\x^2-4\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge2\\x\ne\pm2\end{cases}\Leftrightarrow x>2}\)
Để \(\sqrt{\frac{1}{3-2x}}\) có nghĩa thì điều kiện là:
\(\hept{\begin{cases}3-2x\ne0\\3-2x\ge0\end{cases}\Leftrightarrow}3-2x>0\Leftrightarrow2x< 3\Leftrightarrow x< \frac{3}{2}\)
Để \(\sqrt{\frac{4}{2x+3}}\) có nghĩa thì điều kiện là:
\(2x+3>0\Leftrightarrow2x>-3\Leftrightarrow x>-\frac{3}{2}\)
Để \(\sqrt{-\frac{2}{x+1}}\) có nghĩa thì điều kiện là:
\(\hept{\begin{cases}-\frac{2}{x+1}\ge0\\x+1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+1\le0\\x\ne-1\end{cases}\Leftrightarrow}x< -1\)
\(a,\sqrt{x^2-8x+18}=\sqrt{x^2-8x+16+2}\)
\(=\sqrt{\left(x-4\right)^2+2}\)
Vì \(\left(x-4\right)^2+2>0\)với \(\forall x\)
\(\Rightarrow\)Biểu thức luôn được xác định với mọi x
\(b,\sqrt{\frac{3x+4}{x-2}}\)
\(btxđ\Leftrightarrow\hept{\begin{cases}x-2\ne0\\\frac{3x+4}{x-2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\\frac{3x+4}{x-2}\ge0\end{cases}}}\)
\(\frac{3x+4}{x-2}\ge0\)\(\Rightarrow\orbr{\begin{cases}3x+4\ge0;x-2\ge0\\3x+4< 0;x-2< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-\frac{4}{3};x\ge2\\x< -\frac{4}{3};x< 2\end{cases}\Rightarrow\orbr{\begin{cases}x\ge2\\x< -\frac{4}{3}\end{cases}}}\)
Mà \(x\ne2\)\(\Rightarrow x>2\)hoặc \(x< -\frac{4}{3}\)
a) \(\sqrt{\left|x-1\right|-3}\) xác định khi
\(\left|x-1\right|-3\ge0\)
\(\left|x-1\right|\ge3\)
\(\Rightarrow\orbr{\begin{cases}x-1\ge3\\x-1\ge-3\end{cases}}\Rightarrow\orbr{\begin{cases}x\ge4\\x\ge-2\end{cases}}\)
vậy \(\orbr{\begin{cases}x\ge4\\x\ge-2\end{cases}}\) thì \(\sqrt{\left|x-1\right|-3}\) xác định
Biểu thức có nghĩa \(<=>\begin{cases} x^2-4 \ne 0\\x-2 \ge0 \end{cases}\)
\(<=>\begin{cases} x \ne \pm 2\\x \ge 2\end{cases}\)
`<=>x > 2`
hmmm....đợi cô nghĩ chút<)