K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2017

\(\frac{3}{4}x-1>\frac{1}{2}x+5\)

\(\Leftrightarrow\frac{3}{4}x-\frac{1}{2}x>5+1\)

\(\Leftrightarrow\frac{1}{4}x>6\)

\(\Leftrightarrow x>24\)

Vậy x=24.

Chúc bạn học tốt.

20 tháng 11 2017

tính đúng ra x > 24 nhé Nhã Hy

24 tháng 3 2019

Bài 3: 

Đặt: \(x^2=a\left(a\ge0\right),y^2=b\left(b\ge0\right)\)

Ta có: \(\frac{a+b}{10}=\frac{a-2b}{7}\) và a2b2 = 81

\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\frac{3b}{3}=b\) (1)

\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{2a+2b}{20}=\frac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\frac{3a}{27}=\frac{a}{9}\) (2)

Từ (1) và (2) => \(\frac{a}{9}=b\Rightarrow a=9b\)

Do a2b2 = 81 nên: (9b)2.b2 = 81 => 81b4 = 81 => b4 = 1=> b = 1 (vì: \(b\ge0\))

=> a = 9.1 = 9

Ta có: x2 = 9 và y2 = 1

=> x = -3, 3

     y = -1; 1

24 tháng 3 2019

Mình làm bài 4, bài 5 làm tương tự bài 4 nhé

Biết rằng: \(\left|A\right|\ge A\)

\(\left|A\right|=\left|-A\right|\) và \(\left|A\right|\ge0\)

Ta có: \(A=\left|x-3\right|+\left|x-5\right|+\left|7-x\right|\ge x-3+0+7-x=4\)

Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x=5\\x\le7\end{cases}}\Leftrightarrow x=5\)

Với x = 5 thì A đạt gtnn là: 4

30 tháng 5 2019

Ta có: \(\frac{x+1}{7}=0\Leftrightarrow x+1=0\)

                                 \(\Leftrightarrow x=-1\)

Ta có: \(\frac{3x+3}{5}=0\)

\(\Leftrightarrow3x+3=0\)

\(\Leftrightarrow3x=-3\)

\(\Leftrightarrow x=-1\)

30 tháng 5 2019

Ta có: \(\frac{2x\left(x+1\right)}{3x+4}=0\Leftrightarrow2x\left(x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy x \(\in\left\{-1;0\right\}\) thì \(\frac{2x\left(x+1\right)}{3x+4}=0\)

Ta có: \(\frac{2x\left(x-5\right)}{x-7}=0\Leftrightarrow2x\left(x-5\right)=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

Vậy \(x\in\left\{0;5\right\}\) thì \(\frac{2x\left(x-5\right)}{x-7}=0\)

25 tháng 1 2016

mình làm câu b nha

x nhỏ nhất là 5 hay x>5

16 tháng 8 2016

-Ta có X=1/2

=>(m-4)/(m+3)=1/2

<=>m-4=1/2(m+3)

<=>m-4=m/2+3/2

<=>m-m/2=4+3/2=11/2

<=>m_(1-1/2)=11/2

<=>m/2=11/2=>m=11(thỏa mãn điều kiện m là số nguyên)

Vậy m=11

                 

28 tháng 8 2016

\(C=-3+\left|\frac{3}{4}x-\frac{2}{5}\right|\Leftrightarrow\left|\frac{3}{4}x-\frac{2}{5}\right|-3\) . Có: \(\left|\frac{3}{4}x-\frac{2}{5}\right|\ge0\)

\(\Rightarrow\left|\frac{3}{4}x-\frac{2}{5}\right|-3\ge-3\) . Dấu = xảy ra khi: \(\left|\frac{3}{4}x-\frac{2}{5}\right|=0\Rightarrow x=\frac{8}{15}\)

Vậy: \(Min_C=-3\) tại \(x=\frac{8}{15}\)

11 tháng 7 2019

a) Ta có: \(\left|x+\frac{3}{2}\right|\ge0\forall x\)

 Hay : P \(\ge\)\(\forall\)x

Dấu "=" xảy ra khi: \(x+\frac{3}{2}=0\) <=> \(x=-\frac{3}{2}\)

Vậy Pmin = 0 tại x  = -3/2

b) Ta có: \(\left|3-x\right|\ge0\forall x\)

=> \(\left|3-x\right|+\frac{2}{5}\ge\frac{2}{5}\forall x\)

hay P \(\ge\)2/5 \(\forall\)x

Dấu "=" xảy ra khi: 3 - x = 0 <=> x = 3

Vậy Pmin = 2/5 tại x = 3

11 tháng 7 2019

a)Có giá trị tuyệt đối của x+3/2 >=0 với mọi x

=> P>=0 với mọi x

P=0 khi x+3/2=0 <=> x=-3/2

Vậy P có giá trị nhỏ nhất là 0 khi x=-3/2

18 tháng 1 2019

\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)

\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)

\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất

\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất

\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất

Mà \(\left|2018x-2019\right|\ge0\)

\(\Rightarrow\left|2018x-2019\right|+1\ge1\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left|2018x-2019\right|=0\)

\(\Leftrightarrow x=\frac{2019}{2018}\)

Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)

18 tháng 1 2019

\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)

\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)

\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)

\(\Rightarrow5^x=3^{2x}\)

Mà \(\left(5;3\right)=1\)

\(\Rightarrow x=2x=0\)