Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(x\in R\)
\(\sqrt{\left(2x+3\right)^2}=5\)
=>|2x+3|=5
=>\(\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=2\\2x=-8\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
b: ĐKXĐ: \(x\in R\)
\(\sqrt{9\left(x-2\right)^2}=18\)
=>\(\sqrt{9}\cdot\sqrt{\left(x-2\right)^2}=18\)
=>\(3\cdot\left|x-2\right|=18\)
=>\(\left|x-2\right|=6\)
=>\(\left[{}\begin{matrix}x-2=6\\x-2=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
c: ĐKXĐ: x>=2
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
=>\(3\sqrt{x-2}-2\sqrt{x-2}+3\sqrt{x-2}=40\)
=>\(4\sqrt{x-2}=40\)
=>\(\sqrt{x-2}=10\)
=>x-2=100
=>x=102(nhận)
d: ĐKXĐ: \(x\in R\)
\(\sqrt{4\left(x-3\right)^2}=8\)
=>\(\sqrt{\left(2x-6\right)^2}=8\)
=>|2x-6|=8
=>\(\left[{}\begin{matrix}2x-6=8\\2x-6=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=14\\2x=-2\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=7\left(nhận\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)
e: ĐKXĐ: \(x\in R\)
\(\sqrt{4x^2+12x+9}=5\)
=>\(\sqrt{\left(2x\right)^2+2\cdot2x\cdot3+3^2}=5\)
=>\(\sqrt{\left(2x+3\right)^2}=5\)
=>|2x+3|=5
=>\(\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=2\\2x=-8\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
f: ĐKXĐ:x>=6/5
\(\sqrt{5x-6}-3=0\)
=>\(\sqrt{5x-6}=3\)
=>\(5x-6=3^2=9\)
=>5x=6+9=15
=>x=15/5=3(nhận)
a) \(\left|3x+1\right|=\left|x+1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=x+1\\3x+1=-x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
c) \(\sqrt{9x^2-12x+4}=\sqrt{x^2}\)
\(\Leftrightarrow\sqrt{\left(3x-2\right)^2}=\sqrt{x^2}\)
\(\Leftrightarrow\left|3x-2\right|=\left|x\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=x\\3x-2=-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)
d) \(\sqrt{x^2+4x+4}=\sqrt{4x^2-12x+9}\)
\(\Leftrightarrow\sqrt{\left(x+2\right)^2}=\sqrt{\left(2x-3\right)^2}\)
\(\Leftrightarrow\left|x+2\right|=\left|2x-3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=2x-3\\x+2=-2x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{1}{3}\end{matrix}\right.\)
e) \(\left|x^2-1\right|+\left|x+1\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow x=-1\)
f) \(\sqrt{x^2-8x+16}+\left|x+2\right|=0\)
\(\Leftrightarrow\sqrt{\left(x-4\right)^2}+\left|x+2\right|=0\)
\(\Leftrightarrow\left|x-4\right|+\left|x+2\right|=0\)
⇒ vô nghiệm
b:
ĐKXĐ: x>0
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\)
\(\Leftrightarrow x+1-2\sqrt{x}=0\)
=>x=1
a) ta có \(\sqrt{12x^2+12x+19}+\sqrt{20x^2+20x+14}=-4x^2-4x+6\)
\(\Leftrightarrow\sqrt{12\left(x+\dfrac{1}{2}\right)^2+16}+\sqrt{20\left(x+\dfrac{1}{2}\right)^2+9}=-\left(2x+1\right)^2+7\)ta có : \(VT\ge\sqrt{16}+\sqrt{9}=7\) và \(VT\le7\)
\(\Rightarrow VT=VP\) \(\Leftrightarrow x=\dfrac{-1}{2}\) vậy \(x=\dfrac{-1}{2}\)
b) điều kiện \(x>0\)
ta có : \(\left(x+\dfrac{1}{x}\right)-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+4=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\) \(\Leftrightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}-2=0\)
\(\Leftrightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}=2\Leftrightarrow\dfrac{x+\sqrt{x}}{\sqrt{x}}=2\Leftrightarrow x+\sqrt{x}=2\sqrt{x}\)
\(\Leftrightarrow x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=1\left(N\right)\end{matrix}\right.\)
vậy \(x=1\)
b:
ĐKXĐ: x>0
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\)
\(\Leftrightarrow x+1-2\sqrt{x}=0\)
=>x=1
1.
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$A=|x+2|+|x+3|=|x+2|+|-x-3|\geq |x+2-x-3|=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $(x+2)(-x-3)\geq 0$
$\Leftrightarrow (x+2)(x+3)\leq 0$
$\Leftrightarrow -3\leq x\leq -2$
2. ĐKXĐ: $x\geq 1$
\(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\sqrt{(x-1)+2\sqrt{x-1}+1}+\sqrt{(x-1)-2\sqrt{x-1}+1}\)
\(=\sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}=|\sqrt{x-1}+1|+|\sqrt{x-1}-1|\)
\(=|\sqrt{x-1}+1|+|1-\sqrt{x-1}|\geq |\sqrt{x-1}+1+1-\sqrt{x-1}|=2\)
Vậy gtnn của $B$ là $2$. Giá trị này đạt tại $(\sqrt{x-1}+1)(1-\sqrt{x-1})\geq 0$
$\Leftrightarrow 1-\sqrt{x-1}\geq 0$
$\Leftrightarrow 0\leq x\leq 2$
\(ĐK:\orbr{\begin{cases}x\le1-\sqrt{2}\\1+\sqrt{2}\le x\le3\end{cases}}\)
\(\sqrt{2x^2-4x-2}+\left(x-1\right)^2\sqrt{12x-4}=\left(8-x\right)\sqrt{3-x}\)\(\Leftrightarrow\sqrt{2x^2-4x-2}-\sqrt{3-x}+\left(2x^2-3x-5\right)\sqrt{3-x}=0\)\(\Leftrightarrow\frac{2x^2-3x-5}{\sqrt{2x^2-4x-2}+\sqrt{3-x}}+\left(2x^2-3x-5\right)\sqrt{3-x}=0\)\(\Leftrightarrow\left(2x^2-3x-5\right)\left(\frac{1}{\sqrt{2x^2-4x-2}+\sqrt{3-x}}+\sqrt{3-x}\right)=0\)(*)
Mà ta có thể thấy được: \(\frac{1}{\sqrt{2x^2-4x-2}+\sqrt{3-x}}+\sqrt{3-x}>0\)nên từ phương trình (*) suy ra \(2x^2-3x-5=0\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{2}\end{cases}}\)(t/m điều kiện)
Vậy phương trình có tập nghiệm \(S=\left\{-1;\frac{5}{2}\right\}\)
a/ \(\sqrt{\left(4x^2-12x+11\right)}=4x^2-12x+11\)
Đặt \(\sqrt{4x^2-12x+11}=\sqrt{\left(2x+3\right)^2+2}=a\left(a>1\right)\)
\(\Rightarrow a=a^2\)
\(\Rightarrow\orbr{\begin{cases}a=0\left(l\right)\\a=1\left(1\right)\end{cases}}\)
Câu còn lại tương tự
câu a với mọi x bạn ạ