Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ai lm giúp mk vs câu nào cũng được. Ai làm xong sớm nhất sẽ được tick
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Ta có : \(\dfrac{98x^2-2}{x-2}=0\Leftrightarrow\left\{{}\begin{matrix}98x^2-2=0\\x-2\ne0\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x^2=\dfrac{1}{49}\\x\ne2\end{matrix}\right.\Leftrightarrow x=\pm\dfrac{1}{7}\)
Vậy giá trị của phân thức này bằng 0 khi \(x=\pm\dfrac{1}{7}\)
b, Ta có : \(\dfrac{3x-2}{x^2+2x+1}=0\Leftrightarrow\dfrac{3x-2}{\left(x+1\right)^2}=0\Leftrightarrow\left\{{}\begin{matrix}3x-2=0\\\left(x+1\right)^2\ne0\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\x\ne-1\end{matrix}\right.\)
Vậy giá trị của phân thức này bằng 0 khi \(x=\dfrac{2}{3}\)
a)
98x^2 -2 =0 =>x^2 =1/49 => x= -+1/7 nhận
b)
3x-2=0=>x=2/3 nhận
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì \(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\) với mọi giá trị của \(x\) nên giá trị của biểu thức luôn luôn âm với mọi giá trị khác 0 và khác -3 của \(x\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
A = \(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
=\(\left(\dfrac{3-x}{x+3}.\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{x}{x+3}\right):\dfrac{3x^3}{x+3}\) (đkxđ: x \(\ne\)\(\pm\)3)
= \(\left(\dfrac{x}{x+3}-1\right).\dfrac{x+3}{3x^2}\)
= \(\dfrac{x-x-3}{x+3}.\dfrac{x+3}{3x^2}\)
= -x2
b) Thay x = \(\dfrac{1}{2}\) vào A, ta có:
A = -\(\left(\dfrac{1}{2}\right)^2\)
= -\(\dfrac{1}{4}\)
c) Để A < 0 thì -x2 < 0
mà -x2 \(\le\) 0 \(\forall\)x
\(\Rightarrow\) Với mọi x (x\(\ne\)0) thì A < 0
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3:
a) Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\) \(\geq 2.\frac{(1+1)^2}{2xy+x^2+y^2}=\frac{8}{(x+y)^2}=8\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
b) Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{2xy}+\left (\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\geq \frac{1}{2xy}+\frac{(1+1)^2}{2xy+x^2+y^2}\)
\(=\frac{1}{2xy}+\frac{4}{(x+y)^2}\)
Theo BĐT AM-GM:
\(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{1}{2xy}\geq 2\)
Do đó \(\frac{1}{xy}+\frac{1}{x^2+y^2}\geq 2+4=6\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
Bài 1: Thiếu đề.
Bài 2: Sai đề, thử với \(x=\frac{1}{6}\)
Bài 4 a) Sai đề với \(x<0\)
b) Áp dụng BĐT AM-GM:
\(x^4-x+\frac{1}{2}=\left (x^4+\frac{1}{4}\right)-x+\frac{1}{4}\geq x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x^4=\frac{1}{4}\\ x=\frac{1}{2}\end{matrix}\right.\) (vô lý)
Do đó dấu bằng không xảy ra , nên \(x^4-x+\frac{1}{2}>0\)
Bài 6: Áp dụng BĐT AM-GM cho $6$ số:
\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^3b^3c^3d^3}=6\)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=d=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
5) a) Đặt b+c-a=x;a+c-b=y;a+b-c=z thì 2a=y+z;2b=x+z;2c=x+y
Ta có:
\(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}=\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\)
Vậy ta suy ra đpcm
b) Ta có: a+b>c;b+c>a;a+c>b
Xét: \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)
.Tương tự:
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c};\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)
Vậy ta có đpcm
6) Ta có:
\(a^2+b^2+c^2+d^2+ab+cd\ge2ab+2cd+ab+cd=3\left(ab+cd\right)\)
\(ab+cd=ab+\dfrac{1}{ab}\ge2\)
Suy ra đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
a.th1: x-2> 0 và x-5> 0
x>2 và x>5
x>5
th2: x-2< 0 và x-3<0
x<2 và x<3
x<2
b, giải tuong tu nhe
a) \(\frac{x-2}{x-3}>0\) khi (x - 2) và (x - 3) cùng dấu
Th1 : \(\hept{\begin{cases}x-2>0\\x-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x>3\end{cases}\Leftrightarrow}x>3}\)
Th2 : \(\hept{\begin{cases}x-2< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 2\\x< 3\end{cases}\Leftrightarrow}x< 2}\)
a)\(\dfrac{x-2}{x+3}>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x+3< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x>-3\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x< -3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -3\end{matrix}\right.\)
b) Vì 2>-5 =>x+2>x-5
\(\dfrac{x+2}{x-5}< 0\Leftrightarrow\left\{{}\begin{matrix}x+2>0\\x-5< 0\end{matrix}\right.\)vì x+2>x-5 \(\Leftrightarrow\left\{{}\begin{matrix}x>-2\\x< 5\end{matrix}\right.\Leftrightarrow-2< x< 5}\)
câu b bạn có thể làm rõ hơn