Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne-3\end{cases}}\)
b) \(P=1+\frac{x+3}{x^2+5x+6}\div\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)
\(\Leftrightarrow P=1+\frac{x+3}{\left(x+3\right)\left(x+2\right)}:\left(\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right)\)
\(\Leftrightarrow P=1+\frac{1}{x+2}:\left(\frac{2}{x-2}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{1}{x+2}\right)\)
\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{2x+4-x-x+2}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{6}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow P=1+\frac{\left(x-2\right)\left(x+2\right)}{6\left(x+2\right)}\)
\(\Leftrightarrow P=1+\frac{x-2}{6}\)
\(\Leftrightarrow P=\frac{x+4}{6}\)
c) Để P = 0
\(\Leftrightarrow\frac{x+4}{6}=0\)
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Để P = 1
\(\Leftrightarrow\frac{x+4}{6}=1\)
\(\Leftrightarrow x+4=6\)
\(\Leftrightarrow x=2\)
d) Để P > 0
\(\Leftrightarrow\frac{x+4}{6}>0\)
\(\Leftrightarrow x+4>0\)(Vì 6>0)
\(\Leftrightarrow x>-4\)
a , \(16x^2+8x+1=\left(4x\right)^2+2.4x.1+1^2=\left(4x+1\right)^2\)
b , \(x^2-x+\dfrac{1}{4}=x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=\left(x-\dfrac{1}{2}\right)^2\)
a,(4x+1)2 e,\(\left(\dfrac{3}{2}x-\dfrac{2}{5}\right)^2\)
b,(x-\(\dfrac{1}{2}\))2 g,\(\left(xy+1\right)^2\)
c,(\(x+\dfrac{3}{2}\))2 h,\(\left(x+5\right)^2\)
d,\(\left(x-\dfrac{5}{4}\right)^2\) i,\(-\left(x-6\right)^2\)
k,\(-\left(2x+3\right)^2\)
B3;a,ĐKXĐ:\(x\ne\pm4\)
A=\(\left(\dfrac{4}{x-4}-\dfrac{4}{x+4}\right)\dfrac{x^2+8x+16}{32}=\left(\dfrac{4x+16}{x^2-16}-\dfrac{4x-16}{x^2-16}\right)\dfrac{x^2+2.4x+4^2}{32}=\left(\dfrac{4x+16-4x+16}{x^2-16}\right)\dfrac{\left(x+4\right)^2}{32}=\left(\dfrac{32}{x^2-16}\right)\dfrac{\left(x+4\right)^2}{32}=\dfrac{32\left(x+4\right)^2}{32.\left(x-4\right)\left(x+4\right)}=\dfrac{x+4}{x-4}\\ \\ \\ \\ \\ \\ b,Tacó\dfrac{x+4}{x-4}=\dfrac{1}{3}\Leftrightarrow3x+12=x-4\Leftrightarrow x=-8\left(TM\right)c,TAcó\dfrac{x+4}{x-4}=3\Leftrightarrow x+4=3x-12\Leftrightarrow x=8\left(TM\right)\)
1) \(\left(x-3\right)\left(x-5\right)+44\)
\(=x^2-3x-5x+15+44\)
\(=x^2-8x+59\)
\(=x^2-2.x.4+4^2+43\)
\(=\left(x-4\right)^2+43\ge43>0\)
\(\rightarrowĐPCM.\)
2) \(x^2+y^2-8x+4y+31\)
\(=\left(x^2-8x\right)+\left(y^2+4y\right)+31\)
\(=\left(x^2-2.x.4+4^2\right)-16+\left(y^2+2.y.2+2^2\right)-4+31\)
\(=\left(x-4\right)^2+\left(y+2\right)^2+11\ge11>0\)
\(\rightarrowĐPCM.\)
3)\(16x^2+6x+25\)
\(=16\left(x^2+\dfrac{3}{8}x+\dfrac{25}{16}\right)\)
\(=16\left(x^2+2.x.\dfrac{3}{16}+\dfrac{9}{256}-\dfrac{9}{256}+\dfrac{25}{16}\right)\)
\(=16\left[\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{256}\right]\)
\(=16\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{16}>0\)
-> ĐPCM.
4) Tương tự câu 3)
5) \(x^2+\dfrac{2}{3}x+\dfrac{1}{2}\)
\(=x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{2}\)
\(=\left(x+\dfrac{1}{3}\right)^2+\dfrac{7}{18}>0\)
-> ĐPCM.
6) Tương tự câu 5)
7) 8) 9) Tương tự câu 3).
\(a.P=1+\dfrac{x+3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)=\dfrac{x+3}{x+2}:\left(\dfrac{2}{x-2}-\dfrac{3}{x^2-4}-\dfrac{1}{x+2}\right)=\dfrac{x+3}{x+2}.\dfrac{\left(x+2\right)\left(x-2\right)}{2x+4-3-x+2}=\left(x+3\right).\dfrac{x-2}{x+3}=x-2\left(x\ne\pm2;x\ne-3\right)\)
\(b.P=0\Leftrightarrow x-2=0\Leftrightarrow x=2\left(KTM\right)\)
\(P=1\Leftrightarrow x-2=1\Leftrightarrow x=3\left(TM\right)\)
\(c.P>0\Leftrightarrow x-2>0\Leftrightarrow x>2\)
\(P=\dfrac{2x^5-x^4-2x+1}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(P=\dfrac{2x^5-x^4-2x+1}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{2}{\left(2x+1\right)}\)
\(P=\dfrac{2x^5-x^4-2x+1+2\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}\)
\(P=\dfrac{2x^5-x^4+2x-1}{\left(2x-1\right)\left(2x+1\right)}\)
\(P=\dfrac{x^4\left(2x-1\right)+2x-1}{\left(2x-1\right)\left(2x+1\right)}\)
\(P=\dfrac{\left(2x-1\right)\left(x^4+1\right)}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{x^4+1}{2x+1}\)
cho P=6
\(\dfrac{x^4+1}{2x+1}=6\)
\(\Leftrightarrow x^4+1=6\left(2x+1\right)\)(đk \(x\ne-\dfrac{1}{2}\))
\(\Leftrightarrow x^4-12x-5=0\)
rồi suy ra x
\(\Leftrightarrow1+\dfrac{2}{x+2}+1+\dfrac{8}{x+8}=1+\dfrac{4}{x+4}+1+\dfrac{6}{x+6}\)
\(\Leftrightarrow\dfrac{1}{x+2}+\dfrac{4}{x+8}=\dfrac{2}{x+4}+\dfrac{3}{x+6}\)
\(\Leftrightarrow\dfrac{4}{x+8}-\dfrac{3}{x+6}=\dfrac{2}{x+4}-\dfrac{1}{x+2}\)
\(\Leftrightarrow\dfrac{4x+24-3\left(x+8\right)}{\left(x+8\right)\left(x+6\right)}=\dfrac{2x+4-\left(x+4\right)}{\left(x+4\right)\left(x+2\right)}\)
\(\dfrac{x}{\left(x+8\right)\left(x+6\right)}=\dfrac{x}{\left(x+4\right)\left(x+2\right)}\)
x=0 là nghiệm
x khác 0
\(\left\{{}\begin{matrix}x\ne\left\{-8;-6;-4;-2\right\}\\\left(x+4\right)\left(x+2\right)=\left(x+8\right)\left(x+6\right)\end{matrix}\right.\)<=>x^2 +6x+8 =x^2 +14x+48
-40 =8x=> x =-5 nhận
x={-5;0}