K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 3 2021

Đặt \(x^2=t\ge0\Rightarrow f\left(t\right)=t^2-\left(2m+1\right)t+m+3=0\) (1)

Pt đã cho có 4 nghiệm pb khi (1) có 2 nghiệm pb đều dương

\(\Rightarrow\left\{{}\begin{matrix}\Delta=\left(2m+1\right)^2-4\left(m+3\right)>0\\t_1+t_2=2m+1>0\\t_1t_2=m+3>0\end{matrix}\right.\) \(\Rightarrow m>\dfrac{\sqrt{11}}{2}\)

Không mất tính tổng quát, giả sử 2 nghiệm dương của (1) là \(t_1< t_2\)

Khi đó 4 nghiệm của pt đã cho là: \(-\sqrt{t_2}< -\sqrt{t_1}< \sqrt{t_1}< \sqrt{t_2}\)

Do đó điều kiện đề bài tương đương:

\(\left\{{}\begin{matrix}-\sqrt{t_2}< -2\\-\sqrt{t_1}>-1\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}t_2>4\\t_1< 1\end{matrix}\right.\)

Bài toàn trở thành: tìm m để (1) có 2 nghiệm dương pb thỏa mãn: \(t_1< 1< 4< t_2\)

\(\Rightarrow\left\{{}\begin{matrix}1.f\left(1\right)< 0\\1.f\left(4\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1-\left(2m+1\right)+m+3< 0\\16-4\left(2m+1\right)+m+3< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>3\\m>\dfrac{15}{7}\end{matrix}\right.\) \(\Rightarrow m>3\)

Kết hợp \(m>\dfrac{\sqrt{11}}{2}\Rightarrow m>3\)

a: \(\Delta=\left(2m\right)^2-4\cdot2\cdot\left(m^2-2\right)\)

\(=4m^2-8m^2+16\)

\(=-4m^2+16\)

Để phương trình có hai nghiệm cùng dấu thì \(\left\{{}\begin{matrix}-4m^2+16>=0\\\dfrac{m^2-2}{2}>=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2< =m< =2\\\left[{}\begin{matrix}m>=\sqrt{2}\\m< =-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-2< =m< =-\sqrt{2}\\\sqrt{2}< =m< =2\end{matrix}\right.\)

b: Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0

hay -2<m<2

c: \(\Delta=\left(2m+14\right)^2-4\left(m^2-4\right)\)

\(=4m^2+56m+196-4m^2+16\)

=56m+212

Để phương trình có hai nghiệm âm phân biệt thì \(\left\{{}\begin{matrix}56m+212>0\\2\left(m+7\right)< 0\\\left(m-2\right)\left(m+2\right)>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{53}{14}< m< -7\\\left(m-2\right)\left(m+2\right)>0\end{matrix}\right.\)

=>\(m\in\varnothing\)

Để phương trình có nghiệm đúng với mọi x thì 

(2m)^2-4(m-2)(-m-2)<0 và m-2<0

=>4m^2+4(m^2-4)<0 và m<2

=>8m^2-16<0 và m<2

=>m^2<2

=>-căn 2<m<căn 2

30 tháng 6 2020

Để phương trình có nghiệm trái dấu thì \(\frac{c}{a}< 0\) hay \(ac< 0\)

\(\Leftrightarrow\left(m^2-4\right)m< 0\Leftrightarrow\orbr{\begin{cases}m^2-4>0;m< 0\\m^2-4< 0;m>0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left|m\right|>2;m< 0\\\left|m\right|< 2;m>0\end{cases}}\Leftrightarrow m< -2;0< m< 2\)

P/S Không chắc