K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2021

với $m=1$ thì pt đó trở thành $m=3$ vô nghiệm 

với $m \neq 1$

Thấy \(\Delta'=b'^2-ac=\left(m-1\right)^2-\left(m-1\right).\left(m-3\right)=m^2-2m+1-m^2+4m-3\\ =2m-2\)

nên pt vô nghiệm khi và chỉ khi $2m-2<0⇔m<1$

nên chọn A

16 tháng 3 2020

1:
a)\(\hept{\begin{cases}nx+x=5 \\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
 

24 tháng 11 2021

Bạn áp dụng các kết luận sau:

Hệ phương trình \(\hept{\begin{cases}ax+by=c\\a'x+b'y=c'\end{cases}}\left(a,b,c,a',b',c'\ne0\right)\)

+) Vô nghiệm nếu \(\frac{a}{a'}=\frac{b}{b'}\ne\frac{c}{c'}\)

+) Có nghiệm duy nhất nếu \(\frac{a}{a'}\ne\frac{b}{b'}\)

+) Có vô số nghiệm nếu \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\)

Như vậy hệ phương trình \(\hept{\begin{cases}mx+4y=20\\x+my=10\end{cases}}\left(m\ne0\right)\)

+) Vô nghiệm nếu \(\frac{m}{1}=\frac{4}{m}\ne\frac{20}{10}\Rightarrow\hept{\begin{cases}m^2=4\\m\ne2\end{cases}}\Rightarrow\hept{\begin{cases}m=\pm2\\m=2\end{cases}}\Rightarrow m=-2\)

+) Có nghiệm duy nhất nếu \(\frac{m}{1}\ne\frac{4}{m}\Rightarrow m^2\ne4\Rightarrow m\ne\pm2\)

+) Vô số nghiệm nếu \(\frac{m}{1}=\frac{4}{m}=\frac{20}{10}\Rightarrow m=2\)

4 tháng 4 2017

a) x2 – 2(m – 1)x + m2 = 0 có a = 1, b = -2(m - 1), b' = -(m - 1), c = m2

∆' = [-(m - 1)]2 – m2 = m2 – 2m + 1 – m2 = 1 – 2m

b) Ta có ∆’ = 1 – 2m

Phương trình có hai nghiệm phân biệt khi 1 – 2m > 0 hay khi m < \(\dfrac{1}{2}\)

Phương trình vô nghiệm khi m > \(\dfrac{1}{2}\)

Phương trình có nghiệm kép khi m = \(\dfrac{1}{2}\).

4 tháng 4 2017

a) x2 – 2(m – 1)x + m2 = 0 có a = 1, b = -2(m - 1), b' = -(m - 1), c = m2

∆' = [-(m - 1)]2 – m2 = m2 – 2m + 1 – m2 = 1 – 2m

b) Ta có ∆’ = 1 – 2m

Phương trình có hai nghiệm phân biệt khi 1 – 2m > 0 hay khi m <

Phương trình vô nghiệm khi m >

Phương trình có nghiệm kép khi m = .



20 tháng 3 2021

a)\(\Delta\)=(2m+3)^2-4.(m^2-1)

        =12m+13

=>Phương trình có 2 nghiệm phân biệt<=>\(\Delta\ge0\)

Hay 12m+13>_0

<=>m>_-13/12

b)Vì phương trình có nghiệm x1=1 nên thay x=1 vào phương trình ta có

1^2-(2m+3)1+m^2-1=0

<=>m^2-2m-3=0

<=>m=-1 hoặc m=3

Áp dụng hệ thức Vi-ét ta có

x1.x2=m^2-1

=>x2=m^2-1

+)m=-1=>x2=0

+)m=3=>x2=8

c)Theo câu a ta có 

Phương trình có 2 nghiệm phân biệt<=>m>_-13/12

Áp dụng hệ thức Vi-ét ta có

x1+x2=2m+3 và x1.x2=m^2-1 (1)

Đặt A= x1^2+x2^2=(x1+x2)^2-2.x1.x2

Thay (1) vào A ta có

A=(2m+3)^2-2(m^2-1)

=4m^2+12m+11

=(2m+3)^2+2>_2 Hay GTNN của x1^2+x2^2 là 2

Dấu "=" xảy ra <=>2m+3=0<=>m=-3/2

d)Câu này dễ b tự lm nha

13 tháng 12 2016

\(\hept{\begin{cases}mx-y=5\\x+y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1-x\\mx-1+x=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1-x\\\left(m+1\right)x=6\end{cases}}\)

Để hệ có nghiệm duy nhất thì

m + 1 ≠ 0 <=> m ≠ - 1

Để hệ vô nghiệm thì

m + 1 = 0 <=> m = - 1

14 tháng 12 2016

\(D=m+1\) ; \(D_x=5+1=6\) ; \(D_y=m-5\)

Để hpt có nghiệm duy nhất thì \(D\ne0\Rightarrow m\ne-1\)

Để hpt vô nghiệm thì \(\hept{\begin{cases}D=0\\D_x\ne0\end{cases}}\) hoặc \(\hept{\begin{cases}D=0\\D_y\ne0\end{cases}}\)

Dễ thấy ngay \(D_x\ne0\) . Vậy m = -1 thì hệ vô nghiệm.